• Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope

      Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.; et al. (SPIE-INT SOC OPTICAL ENGINEERING, 2016-07-22)
      Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.
    • Modern technologies of fabrication and testing of large convex secondary mirrors

      Oh, Chang Jin; Lowman, Andrew E.; Dubin, Matt; Smith, Greg; Frater, Eric; Zhao, Chunyu; Burge, James H.; Univ Arizona, Coll Opt Sci; College of Optical Sciences, The Univ. of Arizona (United States); College of Optical Sciences, The Univ. of Arizona (United States); et al. (SPIE-INT SOC OPTICAL ENGINEERING, 2016-07-22)
      Modern large telescopes such as TAO, LSST, TMT and EELT require 0.9m-4m monolithic convex secondary mirrors. The fabrication and testing of these large convex secondary mirrors of astronomical telescopes is getting challenging as the aperture of the mirror is getting bigger. The biggest challenge to fabricate these large convex aspheric mirrors is to measure the surface figure to a few nanometers, while maintaining the testing and fabrication cycle to be efficient to minimize the downtime. For the last a couple of decades there was huge advancement in the metrology and fabrication of large aspheric secondary mirrors. College of Optical Sciences in the University Arizona developed a full fabrication and metrology process with extremely high accuracy and efficiency for manufacturing the large convex secondary mirrors. In this paper modern metrology systems including Swing-Arm Optical Coordinate Measuring System (SOCMM) which is comparable to Interferometry and a Sub-aperture stitching interferometry scalable to a several meters have been presented. Also a Computer Controlled Fabrication Process which produces extremely fine surface figure and finish has been demonstrated. These most recent development has been applied to the fabrication and testing of 0.9m aspheric convex secondary mirror for the Tokyo Atacama Observatory's 6.5m telescope and the result has been presented.