• H α morphologies of star clusters: a LEGUS study of H ii region evolution time-scales and stochasticity in low-mass clusters

      Hannon, Stephen; Lee, Janice C; Whitmore, B C; Chandar, R; Adamo, A; Mobasher, B; Aloisi, A; Calzetti, D; Cignoni, M; Cook, D O; et al. (OXFORD UNIV PRESS, 2019-10-12)
      The morphology of H II regions around young star clusters provides insight into the time-scales and physical processes that clear a cluster's natal gas. We study similar to 700 young clusters (<= 10 Myr) in three nearby spiral galaxies (NGC 7793, NGC 4395, and NGC 1313) using Hubble Space Telescope (HST) imaging from LEGUS (Legacy ExtraGalactic Ultraviolet Survey). Clusters are classified by their H alpha morphology (concentrated, partially exposed, no-emission) and whether they have neighbouring clusters (which could affect the clearing time-scales). Through visual inspection of the HST images, and analysis of ages, reddenings, and stellar masses from spectral energy distributions fitting, together with the (U - B), (V - I) colours, we find (1) the median ages indicate a progression from concentrated (similar to 3Myr), to partially exposed (similar to 4Myr), to no H alpha emission (>5Myr), consistent with the expected temporal evolution of H II regions and previous results. However, (2) similarities in the age distributions for clusters with concentrated and partially exposed H alpha morphologies imply a short time-scale for gas clearing (less than or similar to 1 Myr). Also, (3) our cluster sample's median mass is similar to 1000 M-circle dot, and a significant fraction (similar to 20 per cent) contain one or more bright red sources (presumably supergiants), which can mimic reddening effects. Finally, (4) the median E(B - V) values for clusters with concentrated H alpha and those without H alpha emission appear to be more similar than expected (similar to 0.18 versus similar to 0.14, respectively), but when accounting for stochastic effects, clusters without H alpha emission are less reddened. To mitigate stochastic effects, we experiment with synthesizing more massive clusters by stacking fluxes of clusters within each H alpha morphological class. Composite isolated clusters also reveal a colour and age progression for H alpha morphological classes, consistent with analysis of the individual clusters.