• kMEn: Analyzing noisy and bidirectional transcriptional pathway responses in single subjects

      Li, Qike; Schissler, A. Grant; Gardeux, Vincent; Berghout, Joanne; Achour, Ikbel; Kenost, Colleen; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A.; Univ Arizona, Ctr Biomed Informat & Biostat; et al. (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2017-01-01)
      Motivation: Understanding dynamic, patient-level transcriptomic response to therapy is an important step forward for precision medicine. However, conventional transcriptome analysis aims to discover cohort-level change, lacking the capacity to unveil patient-specific response to therapy. To address this gap, we previously developed two N-of-l-pathways methods, Wilcoxon and Mahalanobis distance, to detect unidirectionally responsive transcripts within a pathway using a pair of samples from a single subject. Yet, these methods cannot recognize bidirectionally (up and down) responsive pathways. Further, our previous approaches have not been assessed in presence of background noise and are not designed to identify differentially expressed mRNAs between two samples of a patient taken in different contexts (e.g. cancer vs non cancer), which we termed responsive transcripts (RTs). Methods: We propose a new N-of-l-pathways method, k-Means Enrichment (kMEn), that detects bidirectionally responsive pathways, despite background noise, using a pair of transcriptomes from a single patient. kMEn identifies transcripts responsive to the stimulus through k-means clustering and then tests for an over-representation of the responsive genes within each pathway. The pathways identified by kMEn are mechanistically interpretable pathways significantly responding to a stimulus. Results: In similar to 9000 simulations varying six parameters, superior performance of kMEn over previous single-subject methods is evident by: (i) improved precision-recall at various levels of bidirectional response and (ii) lower rates of false positives (1-specificity) when more than 10% of genes in the genome are differentially expressed (background noise). In a clinical proof-of-concept, personal treatment specific pathways identified by kMEn correlate with therapeutic response (p-value < 0.01). Conclusion: Through improved single-subject transcriptome dynamics of bidirectionally-regulated signals, kMEn provides a novel approach to identify mechanism-level biomarkers. (C) 2016 Published by Elsevier Inc.
    • N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes

      Li, Qike; Schissler, A. Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A.; Univ Arizona, Ctr Biomed Informat & Biostat; et al. (BIOMED CENTRAL LTD, 2017-05-24)
      Background: Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results: We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion: The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.