• Comparison of Synthetic Media Designed for Expansion of Adipose-Derived Mesenchymal Stromal Cells

      Lensch, Michelle; Muise, Angela; White, Lisa; Badowski, Michael; Harris, David; Univ Arizona, Biorepository (MDPI, 2018-06)
      Mesenchymal stromal cells (MSCs) are multipotent cells that can differentiate into various cell types, such as osteoblasts, myocytes, and adipocytes. This characteristic makes the cells a useful tool in developing new therapies for a number of common maladies and diseases. The utilization of animal-derived growth serum, such as fetal bovine serum (FBS), for the expansion of MSCs has traditionally been used for cell culture. However, in clinical applications, animal-derived products present limitations and safety concerns for the recipient, as exposure to animal (xeno-) antigens and infectious agents is possible. Multiple synthetic, xeno-free media have been developed to combat these limitations of animal-derived growth serum and have the potential to be used in ex vivo MSC expansion for clinical use. The goal of this study was to determine if xeno-free media are adequate to significantly and efficiently expand MSCs derived from adipose tissue. MSCs were cultured in both standard FBS-containing as well as xeno-free media. The media were compared for cell yield, viability, and phenotypic expression via flow cytometry and directed differentiation. The xeno-free media that were tested were StemMACS MSC Expansion Media (Miltenyi Biotec, Bergisch Gladbach, Germany), PLTMax Human Platelet Lysate (Sigma-Aldrich, St. Louis, MO, USA), and MesenCult-hPL media (Stemcell Technologies, Vancouver, BC, Canada). All xeno-free media showed promise as a feasible replacement for animal-derived growth serums. The xeno-free media expanded MSCs more quickly than the FBS-containing medium and also showed great similarity in cell viability and phenotypic expression. In fact, each xeno-free media produced a greater viable cell yield than the standard FBS-containing medium.
    • Rapid Transduction and Expansion of Transduced T Cells with Maintenance of Central Memory Populations

      Pampusch, Mary S; Haran, Kumudhini Preethi; Hart, Geoffrey T; Rakasz, Eva G; Rendahl, Aaron K; Berger, Edward A; Connick, Elizabeth; Skinner, Pamela J; Univ Arizona, Div Infect Dis (CELL PRESS, 2019-09-30)
      Chimeric antigen receptor (CAR)-T cells show great promise in treating cancers and viral infections. However, most protocols developed to expand T cells require relatively long periods of time in culture, potentially leading to progression toward populations of terminally differentiated effector memory cells. Here, we describe in detail a 9-day protocol for CAR gene transduction and expansion of primary rhesus macaque peripheral blood mononuclear cells (PBMCs). Cells produced and expanded with this method show high levels of viability, high levels of co-expression of two transduced genes, retention of the central memory phenotype, and sufficient quantity for immunotherapeutic infusion of 1-2 × 108 cells/kg in a 10 kg rhesus macaque. This 9-day protocol may be broadly used for CAR-T cell and other T cell immunotherapy approaches to decrease culture time and increase maintenance of central memory populations.