• Hyperoxia impairs pro-angiogenic RNA production in preterm endothelial colony-forming cells

      A. Ahern, Megan; P. Black, Claudine; J. Seedorf, Gregory; D. Baker, Christopher; P. Shepherd, Douglas; Univ Arizona, Dept Physiol (AMER INST MATHEMATICAL SCIENCES-AIMS, 2017)
      Disruptions in the response of endothelial progenitor cells to changes in oxygen environment may present a possible mechanism behind multiple pediatric pulmonary disease models, such as bronchopulmonary dysplasia. Using high-throughput fixed single-cell protein and RNA imaging, we have created "stop-motion" movies of Thymosin. 4 (T beta 4) and Hypoxia Inducible Factor 1 alpha (HIF-1 alpha) protein expression and vascular endothelial growth factor (vegf) and endothelial nitric oxide synthase (eNOS) mRNA in human umbilical cord-derived endothelial colony-forming cells (ECFC). ECFC were grown in vitro under both room air and hyperoxia (50% O-2). We find elevated basal T beta 4 protein expression in ECFC derived from prematurely born infants versus full term infants. T beta 4 is a potent growth hormone that additionally acts as an actin sequestration protein and regulates the stability of HIF-1 alpha. This basal level increase of T beta 4 is associated with lower HIF1 alpha nuclear localization in preterm versus term ECFC upon exposure to hyperoxia. We find altered expression in the pro-angiogenic genes vegf and eNOS, two genes that HIF-1 alpha acts as a transcription factor for. This provides a potential link between a developmentally regulated protein and previously observed impaired function of preterm ECFC in response to hyperoxia.