• Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy cow manure

      HU, Enzhu; SUTITARNNONTR, Pakorn; Tuller, Markus; JONES, Scott B.; Univ Arizona, Dept Soil Water & Environm Sci (HIGHER EDUCATION PRESS, 2018-05)
      Greenhouse gas emissions due to biological degradation processes of animal wastes are significant sources of air pollution from agricultural areas. The major environmental controls on these microbe-induced gas fluxes are temperature and moisture content. The objective of this study was to model the effects of temperature and moisture content on emissions of CO2 and CH4 during the ambient drying process of dairy manure under controlled conditions. Gas emissions were continuously recorded over 15 d with paired fully automated closed dynamic chambers coupled with a Fourier Transformed Infrared gas analyzer. Water content and temperature were measured and monitored with capacitance sensors. In addition, on days 0, 3, 6, 9, 12 and 15, pH, moisture content, dissolved organic carbon and total carbon (TC) were determined. An empirical model derived from the Arrhenius equation confirmed high dependency of carbon emissions on temperature and moisture content. Results indicate that for the investigated dairy manure, 6.83% of TC was lost in the form of C-O2 and 0.047% of TC was emitted as CH4. Neglecting the effect of temperature, the moisture contents associated with maximum gas emissions were estimated as 0.75 and 0.79 g center dot g(-1) for CO2 and CH4, respectively.
    • Quantifying E2F1 protein dynamics in single cells

      Mathey-Prevot, Bernard; Parker, Bao-Tran; Im, Carolyn; Hong, Cierra; Dong, Peng; Yao, Guang; You, Lingchong; Univ Arizona, Mol & Cellular Biol (HIGHER EDUCATION PRESS, 2020-03)
      Background: E2F1 protein, a major effector of the Rb/E2F pathway plays a central role in regulating cell-fate decisions involved in proliferation, apoptosis, and differentiation. Its expression is highly dynamic and tightly modulated through a combination of transcriptional, translational and posttranslational controls. However, the mechanisms by which its expression and activity can promote different cellular outcomes remain to be fully elucidated. To better document E2F1 expression in live cells, we have engineered a series of fluorescent E2F1 protein reporters that quantitatively capture E2F1 protein dynamics. Methods: Reporter constructs, under the control of the mouse or human E2F1 proximal promoter, were designed to express an E2F1-Venus fusion protein incapable of binding DNA. In addition, constructs either included or excluded the 3 untranslated region (3UTR) of the E2F1 gene. These constructs were introduced into fibroblasts and epithelial cells, and expression of the fusion reporter protein was validated and quantified in single cells using live imaging. Results: In all cases, expression of the reporter protein effectively recapitulated the behavior of E2F1 under various conditions, including cell cycle progression and genotoxic stress. No or little fluorescent signal of the reporter was detected in G(0), but as the cycle progressed, expression of the reporter protein steadily increased in the nucleus, peaking a few hours before cell division, but declining to baseline 2-3 h prior to the onset of mitosis. The absence of the E2F1 3 ' UTR in the constructs led to considerably higher steady-state levels of the fusion protein, which although normally regulated, exhibited a slightly less complex dynamic profile during the cell cycle or genotoxic stress. Lastly, the presence or absence of Rb failed to impact the overall detection and levels of the reporter proteins. Conclusions: Our validated E2F1 protein reporters complement nicely other reporters of the Rb/E2F pathway and provide a unique tool to follow the complex dynamics of E2F1 expression in real time in single cells.