• An Extensive Set of Kinematic and Kinetic Data for Individuals with Intact Limbs and Transfemoral Prosthesis Users

      Fakoorian, S.; Roshanineshat, A.; Khalaf, P.; Azimi, V.; Simon, D.; Hardin, E.; Department of Electrical Engineering and Computer Engineering, University of Arizona (Hindawi Limited, 2020)
      This paper introduces an extensive human motion data set for typical activities of daily living. These data are crucial for the design and control of prosthetic devices for transfemoral prosthesis users. This data set was collected from seven individuals, including five individuals with intact limbs and two transfemoral prosthesis users. These data include the following types of movements: (1) walking at three different speeds; (2) walking up and down a 5-degree ramp; (3) stepping up and down; (4) sitting down and standing up. We provide full-body marker trajectories and ground reaction forces (GRFs) as well as joint angles, joint velocities, joint torques, and joint powers. This data set is publicly available at the website referenced in this paper. Data from flexion and extension of the hip, knee, and ankle are presented in this paper. However, the data accompanying this paper (available on the internet) include 46 distinct measurements and can be useful for validating or generating mathematical models to simulate the gait of both transfemoral prosthesis users and individuals with intact legs. © 2020 Seyed Fakoorian et al.
    • Change Detection and Feature Extraction of Debris-Flow Initiation by Rock-Slope Failure Using Point Cloud Processing

      He, Xiaoying; Yu, Zeqing; Kemeny, John M.; Youberg, Ann; Wang, Yunkun; College of Engineering, University of Arizona; College of Science, University of Arizona (Hindawi Limited, 2021-01-11)
      Our understanding of debris-flow initiation by slope failure is restricted by the challenge of acquiring accurate geomorphic features of debris flows and the structural setting of the rock mass in the remote mountainous terrain. Point cloud data of debris flows in Sabino Canyon, Tucson, Arizona, July 2006, with initiation by joint-controlled rock slope were obtained using multitemporal LiDAR scanning. Topographic changes were detected by comparing historical LiDAR scanning data of this area since 2005 by adopting open-source CloudCompare software. The results showed persistent scour and erosion in the debris flows after 2006. Point cloud data of joint-controlled rock in the initiation zone were generated by the means of photogrammetry using Pix4D software. The joint planes, the dip direction and the dip value of the joint plane, the joint spacing, and the joint roughness were therefore acquired by point cloud processing. Our study contributes a foundation for analyzing the relationship between the rock features, the generation of slope failure, and the initiation of debris flows. © 2021 Xiaoying He et al.
    • Culture under Complex Perspective: A Classification for Traditional Chinese Cultural Elements Based on NLP and Complex Networks

      Qi, L.; Wang, Y.; Chen, J.; Liao, M.; Zhang, J.; Department of East Asian Studies, University of Arizona (Hindawi Limited, 2021)
      The cultural element is the minimum unit of a cultural system. The systematic categorizing, organizing, and retrieval of the traditional Chinese cultural elements are essential prerequisites for the realization of effective extracting and rational utilization, as well as the prerequisite for exploiting the contemporary value of the traditional Chinese culture. To build an objective, integrated, and reliable classification method and a system of traditional Chinese cultural elements, this study takes the text of Taiping Imperial Encyclopedia in Northern Song Dynasty as the primary data source. The unsupervised word segmentation methods are used to detect Out-of-Vocabulary (OOV), and then the segmentation results by the THULAC tool with and without custom dictionary are compared. The TF-IDF algorithm is applied to extract the keywords of cultural elements and the Ochiia coefficient is introduced to create complex networks of traditional Chinese cultural elements. After analyzing the topological characteristics of the network, the community detection algorithm is used to identify the topics of cultural elements. Finally, a "Means-Ends"two-dimensional orthogonal classification system is established to categorize the topics. The results showed that the degree distribution in the complex network of Chinese traditional cultural elements is a scale-free network with γ = 2.28. The network shows a structure of community and hierarchy features. The top 12 communities have taken up to 91.77% of the scale of the networks. Those 12 topics of the traditional Chinese cultural elements are circularly distributed in the orthogonal system of cultural elements' categorization. © 2021 Lin Qi et al.
    • Epicardially Placed Bioengineered Cardiomyocyte Xenograft in Immune-Competent Rat Model of Heart Failure

      Chinyere, I.R.; Bradley, P.; Uhlorn, J.; Eason, J.; Mohran, S.; Repetti, G.G.; Daugherty, S.; Koevary, J.W.; Goldman, S.; Lancaster, J.J.; et al. (Hindawi Limited, 2021)
      Background. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are under preclinical investigation as a cell-based therapy for heart failure post-myocardial infarction. In a previous study, tissue-engineered cardiac grafts were found to improve hosts' cardiac electrical and mechanical functions. However, the durability of effect, immune response, and in vitro properties of the tissue graft remained uncharacterized. This present study is aimed at confirming the graft therapeutic efficacy in an immune-competent chronic heart failure (CHF) model and providing evaluation of the in vitro properties of the tissue graft. Methods. hiPSC-CMs and human dermal fibroblasts were cultured into a synthetic bioabsorbable scaffold. The engineered grafts underwent epicardial implantation in infarcted immune-competent male Sprague-Dawley rats. Plasma samples were collected throughout the study to quantify antibody titers. At the study endpoint, all cohorts underwent echocardiographic, hemodynamic, electrophysiologic, and histopathologic assessments. Results. The epicardially placed tissue graft therapy improved (p<0.05) in vivo and ex vivo cardiac function compared to the untreated CHF cohort. Total IgM and IgG increased for both the untreated and graft-treated CHF cohorts. An immune response to the grafts was detected after seven days in graft-treated CHF rats only. In vitro, engineered grafts exhibited responsiveness to beta-adrenergic receptor agonism/antagonism and SERCA inhibition and elicited complex molecular profiles. Conclusions. This hiPSC-CM-derived cardiac graft improved systolic and diastolic cardiac function in immune-competent CHF rats. The improvements were detectable at seven weeks post-graft implantation despite an antibody response beginning at week one and peaking at week three. This suggests that non-integrating cell-based therapy delivered by a bioengineered tissue graft for ischemic cardiomyopathy is a viable treatment option. © 2021 Ikeotunye Royal Chinyere et al.