• CA1 pyramidal cells have diverse biophysical properties, affected by development, experience, and aging

      McKiernan, Erin C.; Marrone, Diano F.; Univ Arizona, McKnight Brain Inst; Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México; Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada (PEERJ INC, 2017-09-19)
      Neuron types (e.g., pyramidal cells) within one area of the brain are often considered homogeneous, despite variability in their biophysical properties. Here we review literature demonstrating variability in the electrical activity of CA1 hippocampal pyramidal cells (PCs), including responses to somatic current injection, synaptic stimulation, and spontaneous network-related activity. In addition, we describe how responses of CA1 PCs vary with development, experience, and aging, and some of the underlying ionic currents responsible. Finally, we suggest directions that may be the most impactful in expanding this knowledge, including the use of text and data mining to systematically study cellular heterogeneity in more depth; dynamical systems theory to understand and potentially classify neuron firing patterns; and mathematical modeling to study the interaction between cellular properties and network output. Our goals are to provide a synthesis of the literature for experimentalists studying CA1 PCs, to give theorists an idea of the rich diversity of behaviors models may need to reproduce to accurately represent these cells, and to provide suggestions for future research.
    • Combating SARS-CoV-2: leveraging microbicidal experiences with other emerging/re-emerging viruses

      Ijaz, M. Khalid; Sattar, Syed A.; Rubino, Joseph R.; Nims, Raymond W.; Gerba, Charles P.; Univ Arizona, Water & Energy Sustainable Technol Ctr (PEERJ INC, 2020-09)
      The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/ re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.
    • Density estimates of monarch butterflies overwintering in central Mexico

      Thogmartin, Wayne E.; Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena; Univ Arizona, Sch Nat Resources & Environm; et al. (PEERJ INC, 2017-04-26)
      Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9-60.9 million ha(-1). We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was similar to 27.9 million butterflies ha(-1) (95% CI [2.4-80.7] million ha(-1)); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha(-1)). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asciepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates, The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
    • Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America

      U’Ren, Jana M.; Arnold, A. Elizabeth; Univ Arizona, Sch Plant Sci; Univ Arizona, Dept Agr & Biosyst Engn; Univ Arizona, Dept Ecol & Evolutionary Biol; School of Plant Sciences, University of Arizona, Tucson, AZ, United States of America; School of Plant Sciences, University of Arizona, Tucson, AZ, United States of America (PEERJ INC, 2016-12-13)
      Background. Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth's most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. Methods. We cultured fungi from the interior of surface-sterilized leaves that were living at the time. of sampling (i.e., dophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi,eDn LF), and fallen. leaves (leaf litter.fungi,LLF) from 3-4 species of woody plants in each of five sites in. North America. Our sampling encompassed 18 plant species. representing. two families of Pinophyta.and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial L SU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated'onlyfrom living tissues vs. fungi isolated only from non-living leaves. Results Across the diverse biomes and plant taxa surveyed here, culturable fungi living leays were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed igninolytic or pectinolytic activity in vitro. Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Discussion. Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiornycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum.
    • Effects of anthropogenic wildfire in low-elevation Pacific island vegetation communities in French Polynesia

      Newman, Erica A.; Winkler, Carlea A.; Hembry, David H.; Univ Arizona, Sch Nat Resources & Environm; Univ Arizona, Dept Ecol & Evolutionary Biol (PEERJ INC, 2018-06-20)
      Anthropogenic (or human-caused) wildfire is an increasingly important driver of ecological change on Pacific islands including southeastern Polynesia, but fire ecology studies are almost completely absent for this region. Where observations do exist, they mostly represent descriptions of fire effects on plant communities before the introduction of invasive species in the modern era. Understanding the effects of wildfire in southeastern Polynesian island vegetation communities can elucidate which species may become problematic invasives with continued wildfire activity. We investigate the effects of wildfire on vegetation in three low-elevation sites (45-379 m) on the island of Mo'orea in the Society Islands, French Polynesia, which are already heavily impacted by past human land use and invasive exotic plants, but retain some native flora. In six study areas (three burned and three unburned comparisons), we placed 30 transects across sites and collected species and abundance information at 390 points. We analyzed each local community of plants in three categories: natives, those introduced by Polynesians before European contact (1767 C.E.), and those introduced since European contact. Burned areas had the same or lower mean species richness than paired comparison sites. Although wildfire did not affect the proportions of native and introduced species, it may increase the abundance of introduced species on some sites. Non-metric multidimensional scaling indicates that (not recently modified) comparison plant communities are more distinct from one another than are those on burned sites. We discuss conservation concerns for particular native plants absent from burned sites, as well as invasive species (including Lantana camara and Paraserianthes falcataria ) that may be promoted by fire in the Pacific.
    • Evaluating the utility of camera traps in field studies of predation

      Akcali, Christopher K; Adán Pérez-Mendoza, Hibraim; Salazar-Valenzuela, David; Kikuchi, David W; Guayasamin, Juan M; Pfennig, David W; Univ Arizona, Dept Ecol & Evolutionary Biol (PEERJ INC, 2019-02-25)
      Artificial prey techniques-wherein synthetic replicas of real organisms are placed in natural habitats-are widely used to study predation in the field. We investigated the extent to which videography could provide additional information to such studies. As a part of studies on aposematism and mimicry of coral snakes (Micrurus) and their mimics, observational data from 109 artificial snake prey were collected from video-recording camera traps in three locations in the Americas (terra firme forest, Tiputini Biodiversity Station, Ecuador; premontane wet forest, Nahá Reserve, Mexico; longleaf pine forest, Southeastern Coastal Plain, North Carolina, USA). During 1,536 camera days, a total of 268 observations of 20 putative snake predator species were recorded in the vicinity of artificial prey. Predators were observed to detect artificial prey 52 times, but only 21 attacks were recorded. Mammals were the most commonly recorded group of predators near replicas (243) and were responsible for most detections (48) and attacks (20). There was no difference between avian or mammalian predators in their probability of detecting replicas nor in their probability of attacking replicas after detecting them. Bite and beak marks left on clay replicas registered a higher ratio of avian:mammalian attacks than videos registered. Approximately 61.5% of artificial prey monitored with cameras remained undetected by predators throughout the duration of the experiments. Observational data collected from videos could provide more robust inferences on the relative fitness of different prey phenotypes, predator behavior, and the relative contribution of different predator species to selection on prey. However, we estimate that the level of predator activity necessary for the benefit of additional information that videos provide to be worth their financial costs is achieved in fewer than 20% of published artificial prey studies. Although we suggest future predation studies employing artificial prey to consider using videography as a tool to inspire new, more focused inquiry, the investment in camera traps is unlikely to be worth the expense for most artificial prey studies until the cost:benefit ratio decreases.
    • The first North American (Hyaenodonta: Hyaenodontidae), a new species from the late Uintan of Utah

      Zack, Shawn P; Univ Arizona, Dept Basic Med Sci, Coll Med Phoenix (PEERJ INC, 2019-11-22)
      The carnivorous mammalian fauna from the Uintan (late middle Eocene) of North America remains relatively poorly documented. This is unfortunate, as this is a critical interval in the transition from "creodont" to carnivoran dominated carnivore guilds. This study reports a new species from the Uinta Formation of the Uinta Basin, Utah, the first North American species of the otherwise Asian hyaenodont genus Propterodon. The new species, Propterodon witteri, represented by a dentary with M2-3 from the late Uintan Leota Quarry, is larger than the well-known P. morrisi and P. tongi and has a larger M-3 talonid, but is otherwise very similar. A phylogenetic analysis of hyaenodont interrelationships recovers P. witteri as a hyaenodontine but is generally poorly resolved. A relationship between Hyaenodontinae and Oxyaenoides, recovered by many recent analyses, is not supported. Among the Asian species of Propterodon, P. pishigouensis is reidentified as a machaeroidine oxyaenid and recombined as Apataelurus pishigouensis new combination. Isphanatherium ferganensis may also represent an Asian machaeroidine. Identification of a North American species of Propterodon and an Asian Apataelurus increases the similarity of North American Uintan and Asian Irdinmanhan faunas and suggests that there was substantial exchange of carnivorous fauna during the late middle Eocene.
    • fRNAkenseq: a fully powered-by-CyVerse cloud integrated RNA-sequencing analysis tool

      Hubbard, Allen; Bomhoff, Matthew; Schmidt, Carl J; Univ Arizona, Dept Plant & Soil Sci (PEERJ INC, 2020-05-14)
      Background: Decreasing costs make RNA sequencing technologies increasingly affordable for biologists. However, many researchers who can now afford sequencing lack access to resources necessary for downstream analysis. This means that even as algorithms to process RNA-Seq data improve, many biologists still struggle to manage the sheer volume of data produced by next generation sequencing (NGS) technologies. Scalable bioinformatics tools that exploit multiple platforms are needed to democratize bioinformatics resources in the sequencing era. This is essential for equipping many research groups in the life sciences with the tools to process the increasingly unwieldy datasets they produce. Methods: One strategy to address this challenge is to develop a modern generation of sequence analysis tools capable of seamless data sharing and communication. Such tools will provide interoperability through offerings of interlinked resources. Systems of interlinked, scalable resources, which often incorporate cloud data storage, are broadly referred to as cyberinfrastructure. Cyberinfrastructure integrated tools will help researchers to robustly analyze large scale datasets by efficiently sharing data burdens across a distributed architecture. Additionally, interoperability will allow emerging tools to cross-adapt features of existing tools. It is important that these tools are designed to be easy to use for biologists. Results: We introduce fRNAkenseq, a powered-by-CyVerse RNA sequencing analysis tool that exhibits interoperability with other resources and meets the needs of biologists for comprehensive, easy to use RNA sequencing analysis. fRNAkenseq leverages a complex set of Application Programming Interfaces (APIs) associated with the NSF-funded cyberinfrastructure project, CyVerse, to execute FASTQ-to-differential expression RNA-Seq analyses. Integrating across bioinformatics platforms, fRNAkenseq also exploits cloud integration and cross-talk with another CyVerse associated tool, CoGe. fRNAkenseq offers novel features for the biologist such as more robust and comprehensive pipelines for enrichment than those currently available by default in a single tool, whether they are cloud-based or local installation. Importantly, cross-talk with CoGe allows fRNAkenseq users to execute RNA-Seq pipelines on an inventory of 47,000 archived genomes stored in CoGe or upload their own draft genome.
    • Functional traits of broad-leaved monocot herbs in the understory and forest edges of a Costa Rican rainforest

      Rundel, Philip W; Cooley, Arielle M; Gerst, Katharine L; Riordan, Erin C; Sharifi, M Rasoul; Sun, Jennifer W; Tower, J Alexandra; Univ Arizona, USA Natl Phenl Network; Univ Arizona, Lab Tree Ring Res (PEERJ INC, 2020-10-27)
      Broad-leaved monocot herbs are widespread and dominant components of the shaded understories of wet neotropical forests. These understory habitats are characterized by light limitation and a constant threat of falling branches. Many shaded understory herb species have close relatives that occupy forest edges and gaps, where light availability is higher and defoliation threat is lower, creating an opportunity for comparative analysis of functional traits in order to better understand the evolutionary adaptations associated with this habitat transition. We documented ecological, morphological and ecophysiological traits of multiple herb species in six monocot families from each of these two habitats in the wet tropical rainforest at the La Selva Biological Station, Costa Rica. We found that a mixture of phylogenetic canalization and ecological selection for specific habitats helped explain patterns of functional traits. Understory herbs were significantly shorter and had smaller leaves than forest edge species. Although the mean number of leaves per plant and specific leaf area did not differ between the two groups, the larger leaf size of forest edge species gave them more than three times the mean plant leaf area. Measures of leaf water content and nitrogen content varied within both groups and mean values were not significantly different. Despite the high leaf nitrogen contents, the maximum photosynthetic rates of understory herbs were quite low. Measures of δ13C as an analog of water use efficiency found significantly lower (more negative) values in understory herbs compared to forest edge species. Clonality was strongly developed in several species but did not show strong phylogenetic patterns. This study highlights many functional traits that differ between broad-leaved monocot species characteristic of understory and forest edge habitats, as well as traits that vary primarily by phylogenetic relatedness. Overall, plant functional traits do not provide a simple explanation for the relative differences in abundance for individual understory and forest edge species with some occurring in great abundance while others are relatively rare.
    • Gait changes in a line of mice artificially selected for longer limbs

      Sparrow, Leah M.; Pellatt, Emily; Yu, Sabrina S.; Raichlen, David A.; Pontzer, Herman; Rolian, Campbell; Univ Arizona, Sch Anthropol; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; et al. (PEERJ INC, 2017-02-22)
      In legged terrestrial locomotion, the duration of stance phase, i.e., when limbs are in contact with the substrate, is positively correlated with limb length, and negatively correlated with the metabolic cost of transport. These relationships are well documented at the interspecific level, across a broad range of body sizes and travel speeds. However, such relationships are harder to evaluate within species (i.e., where natural selection operates), largely for practical reasons, including low population variance in limb length, and the presence of confounding factors such as body mass, or training. Here, we compared spatiotemporal kinematics of gait in Longshanks, a long-legged mouse line created through artificial selection, and in random-bred, mass-matched Control mice raised under identical conditions. We used a gait treadmill to test the hypothesis that Longshanks have longer stance phases and stride lengths, and decreased stride frequencies in both fore- and hind limbs, compared with Controls. Our results indicate that gait differs significantly between the two groups. Specifically, and as hypothesized, stance duration and stride length are 8–10% greater in Longshanks, while stride frequency is 8% lower than in Controls. However, there was no difference in the touch-down timing and sequence of the paws between the two lines. Taken together, these data suggest that, for a given speed, Longshanks mice take significantly fewer, longer steps to cover the same distance or running time compared to Controls, with important implications for other measures of variation among individuals in whole-organism performance, such as the metabolic cost of transport.
    • If you build it, they will come: rapid colonization by dragonflies in a new effluent-dependent river reach

      Bogan, Michael T.; Eppehimer, Drew; Hamdhani, Hamdhani; Hollien, Kelsey; Univ Arizona, Sch Nat Resources & Environm (PEERJ INC, 2020-09)
      Background: Aquatic ecosystems are greatly altered by urban development, including the complete loss of natural habitat due to water diversions or channel burial. However, novel freshwater habitats also are created in cities, such as effluent-dependent streams that rely on treated wastewater for flow. It is unclear how diverse these novel ecosystems are, or how quickly aquatic species are able to colonize them. In this study, we (1) quantify odonate (Insecta, Odonata) colonization of a novel effluent-dependent river reach, (2) examine how drying events affect odonates in these novel habitats, and (3) explore whether effluent-dependent streams can support diverse odonate assemblages. Methods: We conducted monthly odonate surveys at three sites along the Santa Cruz River (Tucson, AZ, USA) between June 2019 and May 2020. One site was in a long-established effluent-dependent reach (flowing since the 1970s) that served as a reference site and two sites were in a newly-established reach that began flowing on June 24, 2019 (it was previously dry). We compared odonate species richness, assemblage composition, and colonization patterns across these reaches, and examined how these factors responded to flow cessation events in the new reach. Results: Seven odonate species were observed at the study sites in the new reach within hours of flow initiation, and species rapidly continued to arrive thereafter. Within 3 months, species richness and assemblage composition of adult odonates were indistinguishable in the new and reference reaches. However, drying events resulted in short-term and chronic reductions in species richness at one of the sites. Across all three sites, we found over 50 odonate species, which represent nearly 40% of species known from the state of Arizona. Discussion: Odonates were surprisingly diverse in the effluent-dependent Santa Cruz River and rapidly colonized a newly established reach. Richness levels remained high at study sites that did not experience drying events. These results suggest that consistent discharge of high-quality effluent into dry streambeds can be an important tool for promoting urban biodiversity. However, it remains to be seen how quickly and effectively less vagile taxa (e.g., mayflies, caddisflies) can colonize novel reaches. Effluent-dependent urban streams will always be highly managed systems, but collaboration between ecologists and urban planners could help to maximize aquatic biodiversity while still achieving goals of public safety and urban development.
    • Improving sustainable use of genetic resources in biodiversity archives

      Tuschhoff, E J; Hutter, Carl R; Glor, Richard E; Univ Arizona, Dept Ecol & Evolutionary Biol (PEERJ INC, 2020-02-13)
      Tissue sample databases housed in biodiversity archives represent a vast trove of genetic resources, and these tissues are often destructively subsampled and provided to researchers for DNA extractions and subsequent sequencing. While obtaining a sufficient quantity of DNA for downstream applications is vital for these researchers, it is also important to preserve tissue resources for future use given that the original material is destructively and consumptively sampled with each use. It is therefore necessary to develop standardized tissue subsampling and loaning procedures to ensure that tissues are being used efficiently. In this study, we specifically focus on the efficiency of DNA extraction methods by using anuran liver and muscle tissues maintained at a biodiversity archive. We conducted a series of experiments to test whether current practices involving coarse visual assessments of tissue size are effective, how tissue mass correlates with DNA yield and concentration, and whether the amount of DNA recovered is correlated with sample age. We found that tissue samples between 2 and 8 mg resulted in the most efficient extractions, with tissues at the lower end of this range providing more DNA per unit mass and tissues at the higher end of this range providing more total DNA. Additionally, we found no correlation between tissue age and DNA yield. Because we find that even very small tissue subsamples tend to yield far more DNA than is required by researchers for modern sequencing applications (including whole genome shotgun sequencing), we recommend that biodiversity archives consider dramatically improving sustainable use of their archived material by providing researchers with set quantities of extracted DNA rather than with the subsampled tissues themselves.
    • Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico

      Domínguez-Contreras, José F.; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector; Univ Arizona, Sch Nat Resources & Environm; Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico; Conservation Genetics Laboratory, School of Natural Resources and Environment, University of Arizona, Tucson, AZ, United States of America; et al. (PEERJ INC, 2018-02-15)
      The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.
    • Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential

      Santos, Alina E.; Cruz-Ortega, Rocio; Meza-Figueroa, Diana; Romero, Francisco M.; Sanchez-Escalante, Jose Jesus; Maier, Raina M.; Neilson, Julia W.; Alcaraz, Luis David; Molina Freaner, Francisco E.; Univ Arizona, Dept Soil Water & Environm Sci; et al. (PEERJ INC, 2017-05-04)
      Phytostabilization is a remediation technology that uses plants for in-situ stabilization of contamination in soils and mine tailings. The objective of this study was to identify native plant species with potential for phytostabilization of the abandoned mine tailings in Nacozari, Sonora in northern Mexico. A flora of 42 species in 16 families of angiosperms was recorded on the tailings site and the abundance of the most common perennial species was estimated. Four of the five abundant perennial species showed evidence of regeneration: the ability to reproduce and establish new seedlings. A comparison of selected physicochemical properties of the tailings in vegetated patches with adjacent barren areas suggests that pH, electrical conductivity, texture, and concentration of potentially toxic elements do not limit plant distribution. For the most abundant species, the accumulation factor for most metals was <1, with the exception of Zn in two species. A short-term experiment on adaptation revealed limited evidence for the formation of local ecotypes in Prosopis velutina and Amaranthus watsonii . Overall, the results of this study indicate that five native plant species might have potential for phytostabilization of the Nacozari tailings and that seed could be collected locally to revegetate the site. More broadly, this study provides a methodology that can be used to identify native plants and evaluate their phytostabilization potential for similar mine tailings.
    • Revealing biases in the sampling of ecological interaction networks

      de Aguiar, Marcus A.M.; Newman, Erica A.; Pires, Mathias M.; Yeakel, Justin D.; Boettiger, Carl; Burkle, Laura A.; Gravel, Dominique; Guimarães, Paulo R.; O’Donnell, James L.; Poisot, Timothée; et al. (PEERJ INC, 2019-09-02)
      The structure of ecological interactions is commonly understood through analyses of interaction networks. However, these analyses may be sensitive to sampling biases with respect to both the interactors (the nodes of the network) and interactions (the links between nodes), because the detectability of species and their interactions is highly heterogeneous. These ecological and statistical issues directly affect ecologists' abilities to accurately construct ecological networks. However, statistical biases introduced by sampling are difficult to quantify in the absence of full knowledge of the underlying ecological network's structure. To explore properties of large-scale ecological networks, we developed the software EcoNetGen, which constructs and samples networks with predetermined topologies. These networks may represent a wide variety of communities that vary in size and types of ecological interactions. We sampled these networks with different mathematical sampling designs that correspond to methods used in field observations. The observed networks generated by each sampling process were then analyzed with respect to the number of components, size of components and other network metrics. We show that the sampling effort needed to estimate underlying network properties depends strongly both on the sampling design and on the underlying network topology. In particular, networks with random or scale-free modules require more complete sampling to reveal their structure, compared to networks whose modules are nested or bipartite. Overall, modules with nested structure were the easiest to detect, regardless of the sampling design used. Sampling a network starting with any species that had a high degree (e.g., abundant generalist species) was consistently found to be the most accurate strategy to estimate network structure. Because high-degree species tend to be generalists, abundant in natural communities relative to specialists, and connected to each other, sampling by degree may therefore be common but unintentional in empirical sampling of networks. Conversely, sampling according to module (representing different interaction types or taxa) results in a rather complete view of certain modules, but fails to provide a complete picture of the underlying network. To reduce biases introduced by sampling methods, we recommend that these findings be incorporated into field design considerations for projects aiming to characterize large species interaction networks.
    • Sexually dimorphic venom proteins in long-jawed orb-weaving spiders (Tetragnatha) comprise novel gene families

      Zobel-Thropp, Pamela A.; Bulger, Emily A.; Cordes, Matthew H.J.; Binford, Greta J.; Gillespie, Rosemary G.; Brewer, Michael S.; Univ Arizona, Dept Chem & Biochem (PEERJ INC, 2018-06-01)
      Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication.
    • Shrub encroachment into grasslands: end of an era?

      Huang, Cho-ying; Archer, Steven R; McClaran, Mitchel P; Marsh, Stuart E; Univ Arizona, Sch Nat Resources & Environm (PEERJ INC, 2018-09-05)
      Shifts in the abundance of grasses and woody plants in drylands have occurred several times during the Holocene. However, our understanding of the rates and dynamics of this state-change in recent decades is limited to scattered studies conducted at disparate spatial and temporal scales; the potential misperceptions of shrub cover change could be remedied using cross spatiotemporal scale analyses that link field observations, repeat ground-level photography and remote sensing perspectives. The study was conducted across a semi-arid landscape in southern Arizona. Local data from long-term transects revealed three distinct chronological phases of shrub cover change: expansion (1961-1991, 0.7% y
    • Slumber in a cell: honeycomb used by honey bees for food, brood, heating... and sleeping

      Klein, Barrett A.; Busby, M. Kathryn; Univ Arizona, Grad Interdisciplinary Program Entomol & Insect S (PEERJ INC, 2020-08)
      Sleep appears to play an important role in the lives of honey bees, but to understand how and why, it is essential to accurately identify sleep, and to know when and where it occurs. Viewing normally obscured honey bees in their nests would be necessary to calculate the total quantity and quality of sleep and sleep's relevance to the health and dynamics of a honey bee and its colony. Western honey bees (Apis mellifera) spend much of their time inside cells, and are visible only by the tips of their abdomens when viewed through the walls of an observation hive, or on frames pulled from a typical beehive. Prior studies have suggested that honey bees spend some of their time inside cells resting or sleeping, with ventilatory movements of the abdomen serving as a telltale sign distinguishing sleep from other behaviors. Bouts of abdominal pulses broken by extended pauses (discontinuous ventilation) in an otherwise relatively immobile bee appears to indicate sleep. Can viewing the tips of abdomens consistently and predictably indicate what is happening with the rest of a bee's body when inserted deep inside a honeycomb cell? To distinguish a sleeping bee from a bee maintaining cells, eating, or heating developing brood, we used a miniature observation hive with slices of honeycomb turned in cross-section, and filmed the exposed cells with an infrared-sensitive video camera and a thermal camera. Thermal imaging helped us identify heating bees, but simply observing ventilatory movements, as well as larger motions of the posterior tip of a bee's abdomen was sufficient to noninvasively and predictably distinguish heating and sleeping inside comb cells. Neither behavior is associated with large motions of the abdomen, but heating demands continuous (vs. discontinuous) ventilatory pulsing. Among the four behaviors observed inside cells, sleeping constituted 16.9% of observations. Accuracy of identifying sleep when restricted to viewing only the tip of an abdomen was 86.6%, and heating was 73.0%. Monitoring abdominal movements of honey bees offers anyone with a view of honeycomb the ability to more fully monitor when and where behaviors of interest are exhibited in a bustling nest.
    • The IsoGenie database: an interdisciplinary data management solution for ecosystems biology and environmental research

      Bolduc, Benjamin; Hodgkins, Suzanne B.; Varner, Ruth K.; Crill, Patrick M.; McCalley, Carmody K.; Chanton, Jeffrey P.; Tyson, Gene W.; Riley, William J.; Palace, Michael; Duhaime, Melissa B.; et al. (PEERJ INC, 2020-08)
      Modern microbial and ecosystem sciences require diverse interdisciplinary teams that are often challenged in "speaking" to one another due to different languages and data product types. Here we introduce the IsoGenie Database (IsoGenieDB;https://isogenic-db.asc.ohio-state.edu/), a de novo developed data management and exploration platform, as a solution to this challenge of accurately representing and integrating heterogenous environmental and microbial data across ecosystem scales. The IsoGenieDB is a public and private data infrastructure designed to store and query data generated by the IsoGenie Project, a similar to 10 year DOE-funded project focused on discovering ecosystem climate feedbacks in a thawing permafrost landscape. The IsoGenieDB provides (i) a platform for IsoGenie Project members to explore the project's interdisciplinary datasets across scales through the inherent relationships among data entities, (ii) a framework to consolidate and harmonize the datasets needed by the team's modelers, and (iii) a public venue that leverages the same spatially explicit, disciplinarily integrated data structure to share published datasets. The IsoGenieDB is also being expanded to cover the NASA-funded Archaea to Atmosphere (A2A) project, which scales the findings of IsoGenie to a broader suite of Arctic peatlands, via the umbrella A2A Database (A2A-DB). The IsoGenieDB's expandability and flexible architecture allow it to serve as an example ecosystems database.
    • Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

      Roux, Simon; Solonenko, Natalie E.; Dang, Vinh T.; Poulos, Bonnie T.; Schwenck, Sarah M.; Goldsmith, Dawn B.; Coleman, Maureen L.; Breitbart, Mya; Sullivan, Matthew B.; Univ Arizona, Dept Ecol & Evolutionary Biol; et al. (PEERJ INC, 2016-12-08)
      Background. Viruses strongly influence microbial population dynamics and ecosystem functions However, our ability to quantitatively evaluate those viral impads is limited to the few cultivated viruses and double-stranded DNA (dsDNA) viral genomes captured in quantitative viral metagenornes (vromes). This leaves the ecology of nondsDNA viruses nearly unlmovvn, including single-stranded DNA (ssDNA) viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation). Methods. Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results. Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against) and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were 1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5%) of DNA virus communities, though individual ssDNA genomes, both eukaryoteinfecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA) viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion. Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.