• Login
    Search 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • Search
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Journal
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES (2)
    Authors
    Univ Arizona, Dept Astron (2)
    Univ Arizona, Steward Observ (2)Ball, David (1)Chan, Chi-kwan (1)Cho, Jungyeon (1)Choi, Minho (1)Christian, Pierre (1)Evans, Neal J., II (1)Jannuzi, Buell T. (1)Kim, Junhan (1)View MoreTypes
    Article (2)

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Inflow Motions Associated with High-mass Protostellar Objects

    Yoo, Hyunju; Kim, Kee-Tae; Cho, Jungyeon; Choi, Minho; Wu, Jingwen; Evans, Neal J., II; Ziurys, L. M. (IOP PUBLISHING LTD, 2018-04-02)
    We performed a molecular line survey of 82 high-mass protostellar objects in a search for inflow signatures associated with high-mass star formation. Using the (HCO+)-C-13 (1-0) line as an optically thin tracer, we detected a statistically significant excess of blue asymmetric line profiles in the HCO+ (1-0) transition, but nonsignificant excesses in the HCO+ (3-2) and H2CO (2(12)-1(11)) transitions. The negative blue excess for the HCN (3-2) transition suggests that the line profiles are affected by dynamics other than inflow motion. The HCO+ (1-0) transition thus seems to be the suitable tracer of inflow motions in high-mass star-forming regions, as previously suggested. We found 27 inflow candidates that have at least 1 blue asymmetric profile and no red asymmetric profile, and derived the inflow velocities to be 0.23-2.00 km s(-1) for 20 of them using a simple two-layer radiative transfer model. Our sample is divided into two groups in different evolutionary stages. The blue excess of the group in relatively earlier evolutionary stages was estimated to be slightly higher than that of the other in the HCO+ (1-0) transition.
    Thumbnail

    The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project

    Chan, Chi-kwan; Ball, David; Christian, Pierre; Jannuzi, Buell T.; Kim, Junhan; Marrone, Daniel P.; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios; Rose, Mel; et al. (IOP PUBLISHING LTD, 2019-08-01)
    Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.