## Search

Now showing items 1-10 of 15

JavaScript is disabled for your browser. Some features of this site may not work without it.

All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

JournalASTRONOMY & ASTROPHYSICS (3)MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY (3)AMERICAN JOURNAL OF PHYSICS (2)The Astrophysical Journal (2)EPL (1)EPL (Europhysics Letters) (1)EUROPEAN PHYSICAL JOURNAL C (1)INTERNATIONAL JOURNAL OF MODERN PHYSICS A (1)PHYSICS OF THE DARK UNIVERSE (1)Authors

Univ Arizona, Dept Astron (15)

Univ Arizona, Dept Phys, Appl Math Program (15)

Melia, Fulvio (14)Melia, Fulvio (11)Univ Arizona, Dept Phys (4)Melia, Fulvio (3)Leaf, Kyle (2)Leaf, Kyle (2)Yennapureddy, Manoj K. (2)Yennapureddy, Manoj K. (2)View MoreTypes
Article (15)

AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

Now showing items 1-10 of 15

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

The apparent (gravitational) horizon in cosmology

Melia, Fulvio (AMER ASSOC PHYSICS TEACHERS, 2018-08)

In general relativity, a gravitational horizon (more commonly known as the "apparent horizon") an imaginary surface beyond which all null geodesics recede from the observer. The Universe has an apparent (gravitational) horizon, but unlike its counterpart in the Schwarzschild and Kerr metrics, it is not static. It may eventually turn into an event horizon-an asymptotically defined membrane that forever separates causally connected events from those that are not-depending on the equation of state of the cosmic fluid. In this paper, we examine how and why an apparent (gravitational) horizon is manifested in the Friedmann-Robertson-Walker metric, and why it is becoming so pivotal to our correct interpretation of the cosmological data. We discuss its observational signature and demonstrate how it alone defines the proper size of our visible Universe. In so doing, we affirm its physical reality and its impact on cosmological models. (C) 2018 American Association of Physics Teachers.

A solution to the electroweak horizon problem in the $$R_\mathrm{h}=ct$$Rh=ct universe

Melia, Fulvio (SPRINGER, 2018-09)

Particle physics suggests that the Universe may have undergone several phase transitions, including the well- known inflationary event associated with the separation of the strong and electroweak forces in grand unified theories. The accelerated cosmic expansion during this transition, at cosmic time t ∼ 10−36 − 10−33 s, is often viewed as an explanation for the uniformity of the CMB temperature, T , which would otherwise have required inexplicable initial conditions. With the discovery of the Higgs particle, it is now quite likely that the Universe underwent another (elec- troweak) phase transition, at T = 159.5 ± 1.5 GeV – roughly ∼ 10−11 s after the big bang. During this event, the fermions gained mass and the electric force separated from the weak force. There is currently no established explanation, however, for the apparent uniformity of the vacuum expectation value of the Higgs field which, like the uniformity in T , gives rise to its own horizon problem in standard ΛCDM cosmology. We show in this paper that a solution to the electroweak horizon problem may be found in the choice of cosmological model, and demonstrate that this issue does not exist in the alterna- tive Friedmann–Robertson–Walker cosmology known as the Rh = ct universe.

A two-point diagnostic for the H ii galaxy Hubble diagram

Leaf, Kyle; Melia, Fulvio (OXFORD UNIV PRESS, 2017-12-01)

A previous analysis of starburst-dominated H II galaxies and H II regions has demonstrated
a statistically significant preference for the Friedmann–Robertson–Walker cosmology with
zero active mass, known as the Rh = ct universe, over cold dark matter (CDM) and its
related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with
these data to present a complementary statistical comparison of Rh = ct with Planck CDM.
Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance
modulus measured at two redshifts with that predicted by each cosmology. Our results support
the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is
statistically preferred over Planck CDM. But we also find that the reported errors in the
H II measurements may not be purely Gaussian, perhaps due to a partial contamination by
non-Gaussian systematic effects. The use of H II galaxies and H II regions as standard candles
may be improved even further with a better handling of the systematics in these sources.

Model selection based on the angular-diameter distance to the compact structure in radio quasars

Melia, Fulvio (IOP PUBLISHING LTD, 2018-09-03)

Of all the distance arid temporal measures in cosmology, the angular-diameter distance, d(A)(z), uniquely reaches a maximum value at some finite redshift z(max )and then decreases to zero towards the Big Bang. This effect has been difficult to observe due to a lack of reliable, standard rulers, though refinements to the identification of the compact structure in radio quasars may have overcome this deficiency. In this letter, we assemble a catalog of 140 such sources with 0 less than or similar to z less than or similar to 3 for model selection and the measurement of z(max). In flat Lambda CDM, we find that Omega(m) = 0.24(-0.09)(+0.1) fully consistent with the Planck optimized value, with z(max) = 1.69. Both of these values are associated with a d(A)(z) indistinguishable from that predicted by the zero active mass condition, rho + 3p = 0, in terms of the total pressure rho and total energy density rho of the cosmic fluid. An expansion driven by this constraint, known as the Rh = ct universe, has z(max )= 1.718, which differs from the Lambda CDM optimized value by less than similar to 1.6%. Indeed, the Bayes Information Criterion favours R-h = ct over flat Lambda CDM with a likelihood of similar to 81% vs. 19%, suggesting that the optimized parameters in Planck Lambda CDM mimic the constraint p = -rho/3.

The apparent (gravitational) horizon in cosmology

A cosmological solution to the Impossibly Early Galaxy Problem

Yennapureddy, Manoj K.; Melia, Fulvio (ELSEVIER SCIENCE BV, 2018-03-26)

To understand the formation and evolution of galaxies at redshifts 0 less than or similar to z less than or similar to 10, one must invariably introduce specific models (e.g., for the star formation) in order to fully interpret the data. Unfortunately, this tends to render the analysis compliant to the theory and its assumptions, so consensus is still some-what elusive. Nonetheless, the surprisingly early appearance of massive galaxies challenges the standard model, and the halo mass function estimated from galaxy surveys at z greater than or similar to 4 appears to be inconsistent with the predictions of Lambda CDM, giving rise to what has been termed "The Impossibly Early Galaxy Problem" by some workers in the field. A simple resolution to this question may not be forthcoming. The situation with the halos themselves, however, is more straightforward and, in this paper, we use linear perturbation theory to derive the halo mass function over the redshift range 0 less than or similar to z less than or similar to 10 for the R-h = ct universe. We use this predicted halo distribution to demonstrate that both its dependence on mass and its very weak dependence on redshift are compatible with the data. The difficulties with Lambda CDM may eventually be overcome with refinements to the underlying theory of star formation and galaxy evolution within the halos. For now, however, we demonstrate that the unexpected early formation of structure may also simply be due to an incorrect choice of the cosmology, rather than to yet unknown astrophysical issues associated with the condensation of mass fluctuations and subsequent galaxy formation.

Unseen Progenitors of Luminous High-z Quasars in the Rh = ct Universe

Fatuzzo, Marco; Melia, Fulvio (IOP PUBLISHING LTD, 2017-09-11)

Quasars at high redshift provide direct information on the mass growth of supermassive black holes (SMBHs) and, in turn, yield important clues about how the universe evolved since the first (Pop III) stars started forming. Yet even basic questions regarding the seeds of these objects and their growth mechanism remain unanswered. The anticipated launch of eROSITA and ATHENA is expected to facilitate observations of high-redshift quasars needed to resolve these issues. In this paper, we compare accretion-based SMBH growth in the concordance Lambda CDM model with that in the alternative Friedmann-Robertson-Walker cosmology known as the R-h = ct universe. Previous work has shown that the timeline predicted by the latter can account for the origin and growth of the greater than or similar to 10(9) M-circle dot highest redshift quasars better than that of the standard model. Here, we significantly advance this comparison by determining the soft X-ray flux that would be observed for Eddington-limited accretion growth as a function of redshift in both cosmologies. Our results indicate that a clear difference emerges between the two in terms of the number of detectable quasars at redshift z greater than or similar to 7, raising the expectation that the next decade will provide the observational data needed to discriminate between these two models based on the number of detected high-redshift quasar progenitors. For example, while the upcoming ATHENA mission is expected to detect similar to 0.16 (i.e., essentially zero) quasars at z similar to 7 in R-h = ct, it should detect similar to 160 in Lambda CDM-a quantitatively compelling difference.

Cosmological tests with the joint lightcurve analysis

Melia, F.; Wei, J.-J.; Maier, R.S.; Wu, X.-F. (EPL ASSOCIATION, 2018-10-05)

We examine whether a comparison between wCDM and $R_{\textrm{h}}=ct$ using merged Type-Ia SN catalogs produces results consistent with those based on a single homogeneous sample. Using the Betoule et al. (Astron. Astrophys., 568 (2014) 22). Joint Lightcurve Analysis (JLA) of a combined sample of 613 events from SNLS and SDSS-II, we estimate the parameters of the two models and compare them. We find that the improved statistics can alter the model selection in some cases, but not others. In addition, based on the model fits, we find that there appears to be a lingering systematic offset of ~0.04–0.08 mag between the SNLS and SDSS-II sources, in spite of the cross-calibration in the JLA. Treating wCDM, ΛCDM and $R_{\textrm{h}}=ct$ as separate models, we find in an unbiased pairwise statistical comparison that the Bayes Information Criterion (BIC) favors the $R_{\textrm{h}}=ct$ Universe with a likelihood of $82.8\%$ vs. $17.2\%$ for wCDM, but the ratio of likelihoods is reversed ($16.2\%$ vs. $83.8\%$ ) when $w_{\textrm{de}}=-1$ (i.e., ΛCDM) and strongly reversed ($1.0\%$ vs. $99.0\%$ ) if in addition k = 0 (i.e., flat ΛCDM). We point out, however, that the value of k is a measure of the net energy (kinetic plus gravitational) in the Universe and is not constrained theoretically, though some models of inflation would drive $k\rightarrow 0$ due to an expansion-enforced dilution. Since we here consider only the basic ΛCDM model, the value of k needs to be measured and, therefore, the pre-assumption of flatness introduces a significant bias into the BIC.

J1342+0928 supports the timeline in the R-h = ct cosmology

Melia, Fulvio (EDP SCIENCES S A, 2018-07-24)

Aims. The discovery of quasar J1342+0928 (z = 7.54) reinforces the time compression problem associated with the premature formation of structure in A cold dark matter (ACDM). Adopting the Planck parameters, we see this quasar barely 690 Myr after the big bang, no more than several hundred Myr after the transition from Pop III to Pop II star formation. Yet conventional astrophysics would tell us that a 10 M-circle dot seed, created by a Pop II/III supernova, should have taken at least 820 Myr to grow via Eddington-limited accretion. This failure by ACDM constitutes one of its most serious challenges, requiring exotic "fixes", such as anomalously high accretion rates, or the creation of enormously massive (similar to 10(5) M-circle dot) seeds, neither of which is ever seen in the local Universe, or anywhere else for that matter. Indeed, to emphasize this point, J1342+0928 is seen to be accreting at about the Eddington rate, negating any attempt at explaining its unusually high mass due to such exotic means. In this paper, we aim to demonstrate that the discovery of this quasar instead strongly confirms the cosmological timeline predicted by the R-h = Ct Universe. Methods. We assume conventional Eddington-limited accretion and the time versus redshift relation in this model to calculate when a seed needed to start growing as a function of its mass in order to reach the observed mass of J1342+0928 at z = 7.54. Results. Contrary to the tension created in the standard model by the appearance of this massive quasar so early in its history, we find that in the R-h = Ct cosmology, a 10 M-circle dot seed at z similar to 15 (the start of the Epoch of Reionization at t similar to 878 Myr) would have easily grown into an 8 x 10(8) M-circle dot black hole at z = 7.54 (t similar to 1.65 Gyr) via conventional Eddington-limited accretion.

Evidence of a truncated spectrum in the angular correlation function of the cosmic microwave background

Melia, Fulvio; López-Corredoira, M. (EDP SCIENCES S A, 2018-03-09)

Aim. The lack of large-angle correlations in the fluctuations of the cosmic microwave background (CMB) conflicts with predictions of slow-roll inflation. But while probabilities (≲0.24%) for the missing correlations disfavour the conventional picture at ≳3σ, factors not associated with the model itself may be contributing to the tension. Here we aim to show that the absence of large-angle correlations is best explained with the introduction of a non-zero minimum wave number kmin for the fluctuation power spectrum P(k).
Methods. We assumed that quantum fluctuations were generated in the early Universe with a well-defined power spectrum P(k), although with a cut-off kmin ≠ 0. We then re-calculated the angular correlation function of the CMB and compared it with Planck observations.
Results. The Planck 2013 data rule out a zero kmin at a confidence level exceeding 8σ. Whereas purely slow-roll inflation would have stretched all fluctuations beyond the horizon, producing a P(k) with kmin = 0 – and therefore strong correlations at all angles – a kmin ≠ 0 would signal the presence of a maximum wavelength at the time (tdec) of decoupling. This argues against the basic inflationary paradigm, and perhaps even suggests non-inflationary alternatives, for the origin and growth of perturbations in the early Universe. In at least one competing cosmology, the Rh = ct universe, the inferred kmin corresponds to the gravitational radius at tdec.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.