CONKEY, LAURA ELIZABETH. (The University of Arizona., 1982)
      Long-lived trees preserve a record of environmental conditions during their lifetime in the pattern of yearly xylem widths and in changing wood density within and among the increments. Crossdated earlywood, latewood, and total ring widths, and minimum earlywood and maximum latewood densities, from three sites in the mountains of Maine, are analyzed visually and statistically to evaluate their relationships to one another and to external, environmental factors which affect the ring width and density through internal, physiological processes. Maximum density values show highest levels of similarity within and among the three site chronologies, thus implying a good degree of sensitivity to climate; minimum density values, however, showed lowest sensitivity to climate. Two biologically reasonable hypotheses concerning climate--tree growth interactions are proposed: (1) that maximum density is related to spring temperatures prior to its formation; and (2) that maximum density is related to summer water relations as the latewood forms. With the help of response function analysis, simple correlation, and multiple linear regression, these two hypotheses are tested: (1) maxmum density as a single predictor explains up to 37% of spring temperature variance; with earlywood widths at one site, 47% of spring temperature variance is explained; (2) maximum density as a single predictor explains up to 45% of summer temperature variance, 11% of summer precipitation variance, and 23% of the variance of Thornthwaite water deficit values; with total ring widths at one site, 22% of the variance of summer stream runoff is explained. Regression equations were applied to the 201- to 310-year tree-ring records to form reconstructions of these past climatic events. Independent verification testing of the reconstructions strongly validates the relationship between maximum density and spring temperature; the relationship to summer water relations is not as strongly verified, but results encourage further testin of this relationship. Results from this study may be applied both to (1) an increased understanding of relationship of climate to the formation of wood density; and (2) further development of dendroclimatology in mesic regions such as northeastern North America.
    • A new computerized x-ray densitometric system for tree-ring analysis

      McCord, V. Alexander S. (The University of Arizona., 1984)
    • X-ray densitometric measurement of climatic influence on the intra-annual characteristics of southwestern semiarid conifer tree rings

      Cleaveland, Malcolm Kent.; Dean, Jeffrey S.; Stokes, Marvin A.; Smiley, Terah L.; Ffolliott, Peter F.; Gay, Lloyd W. (The University of Arizona., 1983)
      Annual tree-ring width of Southwestern conifers growing on dry sites exhibits sensitivity to variation in climatically created moisture stress. Douglas-fir, ponderosa pine, and pinyon in the eastern San Juan Basin in northwestern New Mexico and southwestern Colorado were sampled at four sites to investigate covariation of climate with intra-annual anatomy. The sites possessed characteristics that created different amounts of physiological stress in trees. Increment borer samples were glued into wooden mounts and machined to approximately 1.0 mm thickness by a special router-planer. All samples were crossdated by comparing climatically controlled synchronous patterns of ring widths. Moving slit X-ray densitometry (at Forintek Canada Corporation Western Forest Products Laboratory, Vancouver, British Columbia) objectively defined the earlywood zone (large, low density cells) and latewood zone (smaller, denser cells formed late in the growing season) in each ring. The densitometer measured eight parameters for each ring: ring, earlywood, and latewood width, minimum and maximum density, and mean ring, earlywood, and latewood density. Individual radial series were standardized (i.e, transformed to indices with 1.0 mean and homogeneous variance) by fitting curves and dividing annual values by the corresponding curve values. Density series proved more difficult to standardize than widths and usually correlated more poorly among individual radii of the same data data type. Statistical characteristics of site summary density chronologies differed from width chronologies. Response functions using monthly mean temperature and total precipitation showed climate influenced all data types. Low moisture stress increased ring, earlywood, and latewood width and ring, maximum, and latewood density. High moisture stress increased minimum and early— wood density. No width or density type consistently covaried more than any other with climate. Linkage of climatic variation with density parameters differed considerably from that reported in the literature for conifers growing in wetter, cooler climates. Southwestern conifers posed unique densitometric technical difficulties. Selection of sites that caused moderate physiological stress and samples with few missing rings proved critical. Acquisition of density data required much more time and effort than optical measurement of ring width, but yielded valuable intra—annual data. Intra—annual densitometric data hold great promise for reconstruction of seasonal paleoclimate.