• Classification Analytics in Functional Neuroimaging: Calibrating Signal Detection Parameters

      Piegorsch, Walter W.; Fisher, Julia Marie; Piegorsch, Walter W.; Billheimer, Dean; Watkins, Joseph C. (The University of Arizona., 2015)
      Classification analyses are a promising way to localize signal, especially scattered signal, in functional magnetic resonance imaging data. However, there is not yet a consensus on the most effective analysis pathway. We explore the efficacy of k-Nearest Neighbors classifiers on simulated functional magnetic resonance imaging data. We utilize a novel construction of the classification data. Additionally, we vary the spatial distribution of signal, the design matrix of the linear model used to construct the classification data, and the feature set available to the classifier. Results indicate that the k-Nearest Neighbors classifier is not sufficient under the current paradigm to adequately classify neural data and localize signal. Further exploration of the data using k-means clustering indicates that this is likely due in part to the amount of noise present in each data point. Suggestions are made for further research.
    • Improving Estimation Accuracy of GPS-Based Arterial Travel Time Using K-Nearest Neighbors Algorithm

      Wu, Yao-Jan; Li, Zheng; Wu, Yao-Jan; Chiu, Yi-Chang; Hu, Xianbiao (The University of Arizona., 2017)
      Link travel time plays a significant role in traffic planning, traffic management and Advanced Traveler Information Systems (ATIS). A public probe vehicle dataset is a probe vehicle dataset that is collected from public people or public transport. The appearance of public probe vehicle datasets can support travel time collection at a large temporal and spatial scale but at a relatively low cost. Traditionally, link travel time is the aggregation of travel time by different movements. A recent study proved that link travel time of different movements is significantly different from their aggregation. However, there is still not a complete framework for estimating movement-based link travel time. In addition, probe vehicle datasets usually have a low penetration rate but no previous study has solved this problem. To solve the problems above, this study proposed a detailed framework to estimate movement-based link travel time using a high sampling rate public probe vehicle dataset. Our study proposed a k-Nearest Neighbors (k-NN) regression method to increase travel time samples using incomplete trajectory. An incomplete trajectory was compared with historical complete trajectories and the link travel time of the incomplete trajectory was represented by its similar complete trajectories. The result of our study showed that the method can significantly increase link travel time samples but there are still limitations. In addition, our study investigated the performance of k-NN regression under different parameters and input data. The sensitivity analysis of k-NN algorithm showed that the algorithm performed differently under different parameters and input data. Our study suggests optimal parameters should be selected using a historical dataset before real-world application.