• Peripheral Inflammatory Pain and P-Glycoprotein in a Model of Chronic Opioid Exposure

      Davis, Thomas P.; Schaefer, Charles; Davis, Thomas P.; Vanderah, Todd; Tome, Margaret E. (The University of Arizona., 2017)
      The rates of opioid prescription and use have continued to increase over the last few decades. In turn, a greater number of patients suffer from opioid tolerance. Treatment of acute pain is a clinical challenge for these patients. Acute pain can arise from common occurrences like surgical pain and pain resulting from the injury. P-glycoprotein (p-gp) is a transporter at the blood-brain barrier (BBB) associated with a decrease in the analgesic efficacy of morphine. Peripheral inflammatory pain (PIP) is a pain state known to cause a change in p-gp trafficking at the BBB. P-gp traffics from the nucleus to the luminal surface of endothelial cells making up the BBB. This surface where circulating blood interfaces with the endothelial cell is where p-gp will efflux morphine back into circulation. Osmotic minipumps were used as a long-term delivery method in this model of opioid tolerance in female rats. PIP induced p-gp trafficking away from nuclear stores showed a 2-fold increase when animals were exposed to opioids for 6 days. This observation presents a possible relationship between p-gp trafficking and the challenges of treating post-surgical pain in opioid tolerant patients. This could reveal potential strategies for improving pain management in these patients.