• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interacting Effects of Predation and Competition in the Field and in Theory

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14414_sip1_m.pdf
    Size:
    1.460Mb
    Format:
    PDF
    Download
    Author
    Sommers, Pacifica
    Issue Date
    2015
    Keywords
    context-dependent mutualism
    dispersal
    invasive species
    predation
    predator avoidance behavior
    Ecology & Evolutionary Biology
    competition
    Advisor
    Chesson, Peter
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The principle of competitive exclusion holds that the strongest competitor for a single resource can exclude other species. Yet in many systems, more similar species appear to stably coexist than the small number of limiting resources. Understanding how and when similar species can stably coexist has taken on new urgency in managing biological invasions and their ecological impacts. Recent theoretical advances emphasize the importance of predators in determining coexistence. The effects of predators, however, can be mediated by behavioral changes induced in their prey as well as by their lethality. In this dissertation, I ask how considering multiple trophic levels changes our understanding of how a grass invasion (Pennisetum ciliare) affects species diversity and dynamics in southeastern Arizona. In considering interactions with plant consumers, and with the predators of those consumers, this research reveals more general ecological processes that determine species diversity across biological communities. I first present evidence from a grass removal experiment in the field that shows increased emergence and short-term survival of native perennial plants without grass. This is consistent with Pennisetum ciliare causing the observed concurrent decline in native plant abundance following invasion. I then present results from greenhouse and field studies consistent with that suppression of native plants being driven primarily through resource competition rather than increased rodent granivory. Granivorous rodents do not solely function as consumers, however, because they cache their harvested seeds in shallow scatter-hoards, from which seeds can germinate. Rodents thus act also as seed dispersers in a context-dependent mutualism. The primary granivores in areas invaded by Pennisetum ciliare are pocket mice (genus Chaetodipus), which have a well-studied tendency to concentrate their activity under plant cover to avoid predation by owls. Because the dense canopy of the grass may provide safer refuge, I hypothesized the pocket mice may be directly dispersing native seeds closer to the base of the invasive grass. Such a behavior could increase the competitive effect of the grass on native plant species, further driving the impacts of the invasion. By offering experimental seeds dusted in fluorescent powder and tracking where the seeds were cached, I show that rodents do preferentially cache experimental seeds under the grass. This dispersal interaction may be more general to plant interactions with seed-caching rodents across semi-arid regions that are experiencing plant invasions. Finally, I ask how the predator avoidance behavior exhibited by these rodents affects their ability to coexist with one another. Not only could their diversity affect that of the plant community, but the effects of plant invasions can cascade through other trophic levels. Theoretical understanding of how similar predator avoidance strategy alters coexistence had not yet been developed, however. Instead of a field study, therefore, I modified a general consumer-resource model with three trophic levels to ask whether avoidance behavior by the middle trophic level alters the ability of those species to coexist. I found that more effective avoidance behavior, or greater safety for less cost, increased the importance of resource partitioning in determining overall niche overlap. Lowering niche overlap between two species promotes their coexistence in the sense that their average fitness can be more different and still permit coexistence. These results provide novel understanding of behavioral modifications to population dynamics in multi-trophic coexistence theory applicable to this invasion and more broadly.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Ecology & Evolutionary Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.