• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Comparative Phenotypic and Genomics Approaches Provide Insight into the Tripartite Symbiosis of Xenorhabdus bovienii with Steinernema Nematode and Lepidopteran Insect Hosts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14430_sip1_m.pdf
    Size:
    1.843Mb
    Format:
    PDF
    Download
    Author
    McMullen, John George II
    Issue Date
    2015
    Keywords
    insect virulence
    Steinernema
    type VI secretion system
    Microbiology
    host-symbiont switching
    Advisor
    Stock, S. Patricia
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 12-Jan-2017
    Abstract
    Nematodes are highly diverse animals capable of interacting with almost every other form of life on Earth from general trophic interactions to intimate and persistent symbiotic associations. Much of their recognition originates from their various parasitic lifestyles. From an agricultural standpoint, plant parasitic nematodes are widely known for the destruction they can cause to crop plants, such as the case of the root-knot nematode Meloidogyne incognita, or livestock animals, like the Trichinella spiralis, which infects pigs and other animals. From a human health perspective, nematodes can cause many debilitating diseases, for example Wuchereria bancrofti, which is a causative agent of lymphatic filariasis or elephantiasis. However, not all parasitic nematodes have bad implications for human health. For instance, the diverse interactions of insect parasitic nematodes can be used to our benefit. Many of these species have been considered as biological control alternatives to different insect pests that wreak havoc on human, animal, and plant health. There still remain many questions surrounding their evolution, ecology, and physiological capabilities. Many of these taxa are hard to cultivate in the lab due to their complex and intimate lifestyles. Entomopathogenic nematodes (EPNs) are of great interest in agriculture because they vector insect pathogenic bacteria, which are capable of causing death to an insect host within 48 hours post-infection. Much of the molecular underpinnings in this system still remain to be discovered, from understanding the basic ability of these two organisms to associate with one another to genetically engineering more robust and host specific pathogens for application in the field. The focus of the research presented herein is on Steinernematidae nematodes and their bacterial symbionts. Specifically, it focused on the relationship between Xenorhabdus bovienii and its Steinernema hosts. Bioassays were designed to investigate insect virulence of X. bovienii alone in two Lepidoptera insect species with known differential susceptibility to Steinernema-Xenorhabdus pairs. A comparative genomic analysis was performed to compare different Xenorhabdus bovienii strains with observed variation in insect virulence. Results from this analysis demonstrated that virulent strains possess a type VI secretion system (T6SS) locus that is completely absent in strains with attenuated virulence. Bacterial competition assays between T6SS+ and T6SS- strains suggest this locus is involved in bacterial competition. Additionally, symbiont preference assays were carried out to investigate whether Steinernema hosts are able to discern between virulent and attenuated X. bovienii strains. Results from these assays revealed that Steinernema nematodes are able to distinguish between cognate and non-cognate X. bovienii symbionts, giving preference to virulent strains over those with attenuated virulence. Altogether these results provide further evidence that supports the notion that symbiont-switching events have occurred over the Steinernema-Xenorhabdus co-evolutionary history. Specifically, the competitive virulence of certain X. bovienii strains may have conferred them the ability to be selected by different Steinernema hosts, therefore contributing to the success of the nematode-bacterium partnership in being pathogenic to diverse insect hosts.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Microbiology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.