• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Transcription Factor Binding Site Analysis Reveals Mechanistic Features in the Progression of Non-Alcoholic Steatohepatits

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14358_sip1_m.pdf
    Size:
    318.9Kb
    Format:
    PDF
    Download
    Author
    Chaput, Alexandria Laurel
    Issue Date
    2015
    Keywords
    Molecular & Cellular Biology
    Advisor
    Cherrington, Nathan J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 17-Jun-2016
    Abstract
    The liver has a unique capability for regeneration and is particularly resilient to insult. It plays an essential role in drug disposition and metabolism, regulating numerous pathways involved in ADME (absorption, distribution, metabolism, and excretion) processes. In order for a drug to be effective, it must be able to get to its target site in a timely manner and at an appropriate concentration. Chronic liver disease has been of increasing significance and elucidating the driving forces behind disease progression is key to understanding adverse drug reactions and many cases of liver toxicity. Coordinate regulation of liver transporters and drug metabolism enzymes is essential for maintaining homeostasis and effective liver functionality. Nonalcoholic steatohepatitis, a severe inflammatory disease state that progresses from normal steatosis and Nonalcoholic Fatty Liver Disease has shown significant changes in gene expression as pathological disease progression occurs. Transcription factor binding site analysis proves lucrative in elucidating key signaling pathways in disease progression. Several up and down-regulated genes have enriched transcription factor binding sites in the NASH disease state, including members of the HNF, SOX, and LXR families. These transporters and drug metabolizing enzymes are involved in key processes, including inflammatory signaling, liver cell maintenance, bile acid regulation and other processes that are driving factors in liver repair and insult. By identifying key transcription factors in disease progression and looking at the signaling pathways behind the enriched transcription factors, potential driving factors behind disease progression are discovered. As a major contributor to the progression of the disease state, the significance of driving factors for hepatic fibrosis are discussed. The immune system and inflammatory processes are key drivers of fibrosis and cirrhosis, often mediated by cytokines, such as IL-4 and IL-6.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Molecular & Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.