A Smartphone-Based Gait Data Collection System for the Prediction of Falls in Elderly Adults
Affiliation
New Mexico State UniversitySandia National Laboratories
Issue Date
2015-10
Metadata
Show full item recordRights
Copyright © held by the author; distribution rights International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Falls prevention efforts for older adults have become increasingly important and are now a significant research effort. As part of the prevention effort, analysis of gait has become increasingly important. Data is typically collected in a laboratory setting using 3-D motion capture, which can be time consuming, invasive and requires expensive and specialized equipment as well as trained operators. Inertial sensors, which are smaller and more cost effective, have been shown to be useful in falls research. Smartphones now contain Micro Electro-Mechanical (MEM) Inertial Measurement Units (IMUs), which make them a compelling platform for gait data acquisition. This paper reports the development of an iOS app for collecting accelerometer data and an offline machine learning system to classify a subject, based on this data, as faller or non-faller based on their history of falls. The system uses the accelerometer data captured on the smartphone, extracts discriminating features, and then classifies the subject based on the feature vector. Through simulation, our preliminary and limited study suggests this system has an accuracy as high as 85%. Such a system could be used to monitor an at-risk person's gait in order to predict an increased risk of falling.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079