Geometric Model for Tracker-Target Look Angles and Line of Sight Distance
dc.contributor.author | Laird, Daniel T. | |
dc.date.accessioned | 2016-02-16T17:13:06Z | en |
dc.date.available | 2016-02-16T17:13:06Z | en |
dc.date.issued | 2015-10 | en |
dc.identifier.issn | 0884-5123 | en |
dc.identifier.issn | 0074-9079 | en |
dc.identifier.uri | http://hdl.handle.net/10150/596399 | en |
dc.description | ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV | en_US |
dc.description.abstract | To determine the tracking abilities of a Telemetry (TM) antenna control unit (ACU) requires 'truth data' to analyze the accuracy of measured, or observed tracking angles. This requires we know the actual angle, i.e., that we know where the target is above the earth. The positional truth is generated from target time-space position information (TSPI), which implicitly places the target's global positioning system (GPS) as the source of observational accuracy. In this paper we present a model to generate local look-angles (LA) and line-of-sight (LoS) distance with respect to (w.r.t.) target global GPS. We ignore inertial navigation system (INS) data in generating relative position at time T; thus we model the target as a global point in time relative to the local tracker's global fixed position in time. This is the first of three companion papers on tracking This is the first of three companion papers on tracking analyses employing Statistically Defensible Test & Evaluation (SDT&E) methods. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © held by the author; distribution rights International Foundation for Telemetering | en |
dc.subject | TM antenna | en |
dc.subject | ACU | en |
dc.subject | Latitude | en |
dc.subject | Longitude | en |
dc.subject | Altitude | en |
dc.subject | Look-Angle | en |
dc.subject | Line-of-Sight | en |
dc.subject | TSPI | en |
dc.subject | GPS | en |
dc.subject | Local Plane | en |
dc.subject | Spherical Trigonometry | en |
dc.subject | Law of Spherical Cosines | en |
dc.subject | Law of Spherical Signs | en |
dc.title | Geometric Model for Tracker-Target Look Angles and Line of Sight Distance | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-06-17T22:27:19Z | |
html.description.abstract | To determine the tracking abilities of a Telemetry (TM) antenna control unit (ACU) requires 'truth data' to analyze the accuracy of measured, or observed tracking angles. This requires we know the actual angle, i.e., that we know where the target is above the earth. The positional truth is generated from target time-space position information (TSPI), which implicitly places the target's global positioning system (GPS) as the source of observational accuracy. In this paper we present a model to generate local look-angles (LA) and line-of-sight (LoS) distance with respect to (w.r.t.) target global GPS. We ignore inertial navigation system (INS) data in generating relative position at time T; thus we model the target as a global point in time relative to the local tracker's global fixed position in time. This is the first of three companion papers on tracking This is the first of three companion papers on tracking analyses employing Statistically Defensible Test & Evaluation (SDT&E) methods. |