• Faculty Senate Minutes

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2019-09-09)
    • Faculty Senate Minutes March 11, 2019

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2019-03-11)
    • Faculty Senate Minutes May 6, 2019

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2019-05-06)
    • Faculty Senate Minutes April 1, 2019

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2019-04-01)
    • Faculty Senate Minutes February 4, 2019

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2019-02-04)
    • Faculty Senate Minutes December 3, 2018

      University of Arizona Faculty Senate (University of Arizona Faculty Senate (Tucson, AZ), 2018-12-03)
    • Heating and Cooling Degree-Day Characteristics in Arizona

      Green, Christine R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1962-02)
      A twofold study of degree-day data has been made for 49 Arizona weather stations. The first section of the report analyzes the possibility of temperature trends occurring in Arizona. The second section discusses heating and cooling degree-day practical application with emphasis on the Tucson area.
    • Summer Rainy Days in Arizona

      Green, Christine R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1963-01-15)
      June through September rainy days for 22 Arizona weather stations with 50 or more years of record are tabulated, graphically presented, and discussed.
    • Seasonal Precipitation and Temperature Data for Selected Arizona Stations

      Green, Christine R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1964-07-15)
      Annual tabulations of winter (November through April) and summer (May through October) precipitation and temperature for 23 Arizona weather stations have been analyzed in this report. Their relationships are shown and discussed briefly.
    • Tables of the Radar Cross Sections of Water Spheres

      Herman, Benjamin M.; Browning, Samuel R.; Battan, Louis J.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1961-12-01)
    • Arizona Statewide Rainfall

      Green, Christine R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1959-11-30)
      A statistical method of deriving a statewide average annual preciptation value for Arizona has been developed in this study. The techniques employed and several examples showing how these calculations may be used to determine any given year's average rainfall amount for the state or for any smaller state subdivision are presented.
    • Probabilities of Drought and Rainy Periods for Selected Points in the Southwestern United States

      Green, Christine R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1960-01-31)
      This report presents the results of an investigation of rainfall and drought probabilities in the southwestern United States. Daily weather records for ten weather stations were used to compute the empirical probabilities that droughts of 5, 10, 15, 20, or 25 days or rainy periods of 3, 5, 10, or 15 days will start on any day between April 15 and September 15. The results are presented graphically in smoothed form in 24 figures.
    • The Annual March of Precipitation in Arizona, New Mexico, and Northwestern Mexico

      Bryson, Reid A.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1957-06-07)
      This report is concerned with the annual march of monthly precipitation amount in an area comprising the states of Arizona, New Mexico, Sonora, Sinaloa, Durango, and western Chihuahua. Fourier analysis was used to reduce the twentyyear mean monthly values to six harmonic terms, four of which were then plotted on charts and studied. The results of this study indicate that an area consisting largely of the Sierra Madre Occidental in northwestern Mexico, and the portion of Arizona southeast of Tucson constitute a single rainfall province with a strong summer maximum of rainfall. This province also has a winter maximum but only in Arizona does the semi-annual term exceed the annual in amplitude. Within the United States the Gila and Rio Grande valleys constitute rainfall provinces of internally similar annual march, while the upland areas tend to resemble the Pacific coastal pattern to the west.
    • Some Factors in Tucson Summer Rainfall

      Bryson, Reid A.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1957-05-31)
      This report describes an investigation of several synoptic and airmass factors as they relate to the occurrence and amount of daily rainfall at Tucson, Arizona. Of the variables considered as predictors of rain later the same day, three stand out as useful: total precipitable water, Shownlter Stability Index, and distance south of the last closed contour of the circumpolar vortex at 500 mb. Better than 90 percent correct short-term forecasts appear attainable for occurrence of rain, while about twice as many correct forecasts as might be expected by chance were obtained in forecasting rain amount class.
    • Fourier Analysis of the Annual March of Precipitation in Australia

      Bryson, Reid A.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1957-05-31)
      Monthly standard normal rainfall data for about 200 Australian stations was subjected to Fourier analysis. Charts were then plotted for phase angle and amplitude of each of the first four harmonics. These provide an objective description of the pattern of annual march of rainfall, and clearly delineate certain rainfall regions and climatic divides.
    • The Role of Precipitable Water Vapor in Arizona's Summer Rains

      Reitan, Clayton H.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1957-01-31)
      The relation between Arizona's summer rains and the amount of water vapor in the air over Arizona was examined. It was found that the occurrence of rain was primarily determined by the moisture content of the air over the state, defined in this study by the amount of precipitable water at Phoenix. The effects of vertical wind shear and stability on the occurrence of rain were examined, but could not be precisely determined and are probably small as compared with the effects of precipitable water. Precipitation efficiency was found to vary directly with variations in the amount of precipitable water, but could be explained by changes in the evaporation of raindrops between cloud bases and ground in environments of differing precipitable water contents.
    • Significance of Different Vertical Distributions of Water Vapor In Arid and Humid Regions

      Byers, Horace R.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1957-03-15)
      The vertical distribution of water vapor can be expressed by an index coefficient which provides information about eddy and advective transports in a region or in an air mass. The relationship between evapotranspiration and eddy diffusivity of water vapor can be studied in this way. Striking differences in conditions between the arid Southwest and the remainder of the country are shown.
    • Variability of Precipitation in an Arid Region: A Survey of Characteristics for Arizona

      McDonald, James E.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1956-12-31)
      A number of statistical and meteorological aspects of the temporal and spatial variability of precipitation in Arizona have been examined in terms of their bearing on the water resources of the arid southwestern United States. Most of the work summerized has been of the nature of initial exploratory investigations made in order to lay the foundation for the much more extensive studies that will shortly be begun as part of the University of Arizona-U.S. Weather Bureau Cooperative Punchcard Climatological program. A selected sample of long-record Weather Bureau precipitation stations in Arizona were analyzed for their historic variability properties, a number of statistical and calculational techniques were tested, and a general plan has been developed for the next phases of the Institute's variability program. It is believed that these findings will be of interest not only to investigators in arid regions themselves but also to investigators chiefly concerned with more humid areas; for, in many respects, the statistical characteristics of arid-lands precipitation pose the most stringent of all requirements on statistical methodology. In that sense, the quantitative results of the present report may serve as useful indicators of upper bounds on the effects of non-normality, skewness, and heteroscedasticity of precipitation frequency distributions for North America in general.
    • Characteristics of Updrafts in Thunderstorms

      Battan, Louis J.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1978-08-31)
    • Doppler Radar Observations of a Mountain Hailstorm

      Battan, Louis J.; Institute of Atmospheric Physics, The University of Arizona (Institute of Atmospheric Physics, University of Arizona (Tucson, AZ), 1975-08-01)
      By means of an X-band, vertically pointing Doppler radar observations were made of a thunderstorm on 20 August 1973 producing hail about 6 mm in diameter. The observations confirm earlier ones showing a highly variable internal structure. Updrafts are composed of high velocity "eddies" having diameters of about a few 100 m to a kilometer. It is speculated that such hailstorm features as the size and layering of ice type and the sporadic nature of hail showers are explained by the highly variable character of each updraft region and the sequence, at periods of 3 to 4 minutes, of updraft formation.