We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorOkino, Clayton
dc.contributor.authorGao, Jay
dc.contributor.authorClare, Loren
dc.contributor.authorDarden, Scott
dc.contributor.authorWalsh, William
dc.contributor.authorLoh, Kok-kiong
dc.date.accessioned2016-03-30T20:30:54Zen
dc.date.available2016-03-30T20:30:54Zen
dc.date.issued2006-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604074en
dc.descriptionITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractAs the integrated Network Enhanced Telemetry (iNET) program moves forward in resolving systems engineering design and architecture definition, critical technology “gaps” and a migration path to realizing the integration of this technology are needed to insure a smooth transition from the current legacy point to point telemetry links to a network oriented telemetry system. Specifically identified by the DoD aeronautical telemetry community is the need for a migration to a network solution for command, control, and transfer of test data by optimizing the physical, data link, and network layers. In this paper, we present a network centric telemetry preliminary architecture approach based on variants of 802.11 that leverages the open standards as well as the previous Advanced Range Telemetry (ARTM) work on the physical layer waveform. We present a burst modem approach based on the recent AOFDM 802.11a work, a TDMA-like MAC layer based on 802.11e, and then add additional MAC layer features to allow for the multi-hop aeronautical environment using a variant of the current working standard of 802.11s. The combined benefits of the variants obtained from 802.11a, 802.11e, and 802.11s address the needs for both spectrum efficiency in the aeronautical environment and the iNET program.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectiNETen
dc.subjectBurst Modemen
dc.subjectTDMAen
dc.subject802.11en
dc.subjectMACen
dc.titleAn approach to Integrated Spectrum Efficient Network Enhanced Telemetry (iSENET)en_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentJet Propulsion Laboratoryen
dc.contributor.departmentLinQuest Corporationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T07:53:53Z
html.description.abstractAs the integrated Network Enhanced Telemetry (iNET) program moves forward in resolving systems engineering design and architecture definition, critical technology “gaps” and a migration path to realizing the integration of this technology are needed to insure a smooth transition from the current legacy point to point telemetry links to a network oriented telemetry system. Specifically identified by the DoD aeronautical telemetry community is the need for a migration to a network solution for command, control, and transfer of test data by optimizing the physical, data link, and network layers. In this paper, we present a network centric telemetry preliminary architecture approach based on variants of 802.11 that leverages the open standards as well as the previous Advanced Range Telemetry (ARTM) work on the physical layer waveform. We present a burst modem approach based on the recent AOFDM 802.11a work, a TDMA-like MAC layer based on 802.11e, and then add additional MAC layer features to allow for the multi-hop aeronautical environment using a variant of the current working standard of 802.11s. The combined benefits of the variants obtained from 802.11a, 802.11e, and 802.11s address the needs for both spectrum efficiency in the aeronautical environment and the iNET program.


Files in this item

Thumbnail
Name:
ITC_2006_06-08-04.pdf
Size:
373.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record