Show simple item record

dc.contributor.authorLosik, Len*
dc.date.accessioned2016-04-01T21:46:51Zen
dc.date.available2016-04-01T21:46:51Zen
dc.date.issued2010-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604279en
dc.descriptionITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractPrognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectTelemetryen
dc.subjecttest dataen
dc.subjectprognosticen
dc.subjectdiagnosticen
dc.subjectfailure analysisen
dc.subjectdata analysisen
dc.subjectFourier analysisen
dc.subjectspectral analysisen
dc.subjectspectrum analysisen
dc.subjectcommunications scienceen
dc.subjecttelemetry scienceen
dc.subjectsignalsen
dc.titleAdapting Fourier Analysis for Predicting Earth, Mars and Lunar Orbiting Satellite's Telemetry Behavioren_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentFailure Analysisen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-16T02:51:44Z
html.description.abstractPrognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.


Files in this item

Thumbnail
Name:
ITC_2010_10-06-01.pdf
Size:
238.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record