Show simple item record

dc.contributor.authorBertrand, Allison R.
dc.contributor.authorNewton, Todd A.
dc.contributor.authorGrace, Thomas B.
dc.date.accessioned2016-04-01T21:53:29Zen
dc.date.available2016-04-01T21:53:29Zen
dc.date.issued2010-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604307en
dc.descriptionITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractThe integration of standard networking technologies into the test range allows for more capable and complex systems. As System Management provides the capability for dynamic allocation of resources, it is critical to support the level of network flexibility envisioned by the integrated Network-Enhanced Telemetry (iNET) project. This paper investigates the practical performance of managing the Telemetry Network System (TmNS) using the Simple Network Management Protocol (SNMP). It discusses the impacts and benefits of System Management as the size of the TmNS scales from small to large and as distributed and centralized management styles are applied. To support dynamic network states, it is necessary to be able to both collect the current status of the network and command (or modify the configuration of) the network. The management data needs to travel both ways over the telemetry link (in limited bandwidth) without interfering with critical data streams. It is important that the TmNS's status is collected in a timely manner so that the engineers are aware of any equipment failures or other problems; it is also imperative that System Management does not adversely affect the real-time delivery of data. This paper discusses measurements of SNMP traffic under various loading conditions. Statistics considered will include the performance of SNMP commands, queries, and events under various test article and telemetry network loads and the bandwidth consumed by SNMP commands, queries, and events under various conditions (e.g., pre-configuration, normal operation, and device error).
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectiNETen
dc.subjectSystem Managementen
dc.subjectPerformanceen
dc.subjectSNMPen
dc.titleiNET System Management Scalingen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentSouthwest Research Instituteen
dc.contributor.departmentNaval Air Systems Command (NAVAIR)en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-14T07:35:22Z
html.description.abstractThe integration of standard networking technologies into the test range allows for more capable and complex systems. As System Management provides the capability for dynamic allocation of resources, it is critical to support the level of network flexibility envisioned by the integrated Network-Enhanced Telemetry (iNET) project. This paper investigates the practical performance of managing the Telemetry Network System (TmNS) using the Simple Network Management Protocol (SNMP). It discusses the impacts and benefits of System Management as the size of the TmNS scales from small to large and as distributed and centralized management styles are applied. To support dynamic network states, it is necessary to be able to both collect the current status of the network and command (or modify the configuration of) the network. The management data needs to travel both ways over the telemetry link (in limited bandwidth) without interfering with critical data streams. It is important that the TmNS's status is collected in a timely manner so that the engineers are aware of any equipment failures or other problems; it is also imperative that System Management does not adversely affect the real-time delivery of data. This paper discusses measurements of SNMP traffic under various loading conditions. Statistics considered will include the performance of SNMP commands, queries, and events under various test article and telemetry network loads and the bandwidth consumed by SNMP commands, queries, and events under various conditions (e.g., pre-configuration, normal operation, and device error).


Files in this item

Thumbnail
Name:
ITC_2010_10-07-02.pdf
Size:
320.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record