Show simple item record

dc.contributor.authorLeite, Nelson Paiva Oliveira
dc.contributor.authorWalter, Fernando
dc.date.accessioned2016-04-05T19:36:27Zen
dc.date.available2016-04-05T19:36:27Zen
dc.date.issued2007-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/604531en
dc.descriptionITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractFor the final evaluation of a GPS attitude determination algorithm, it was determined its true performance in terms of its accuracy, reliability and dynamic response. To accomplish that, a flight test campaign was carried out to validate the attitude determination algorithm. In this phase, the measured aircraft attitude was compared to a reference attitude, to allow the determination of the errors. The system was built using non-dedicated THALES Z-FX airborne GPS receivers and a complete Flight Tests Instrumentation (FTI) System. Each GPS receiver operates synchronized with its internal time base. The FTI measurements are synchronized to an IRIG-B time base. All time bases have their own random walk characteristic. To avoid C/A code ambiguity, when its internal time base approaches ±1ms error from the GPS time, its clock is then corrected causing time and phase observables discontinuities. A multiple time base synchronization process was developed to correlate GPS and FTI data. The results are presented and the residual errors were considered acceptable. These data allowed the determination of the performance and accuracy of the GPS attitude determination algorithm. The tests profiles are fully compliant with the Federal Aviation Administration (FAA) Advisory Circular (AC) 25-7A.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectAttitudeen
dc.subjectGPSen
dc.subjectFlight Testsen
dc.subjectTime Correlationen
dc.subjectIRIG-Ben
dc.titleMULTIPLE TIME BASE SYCHRONIZATION PROCESS APPLIED TO THE FLIGHT TESTS CAMPAIGN OF A GPS ATTITUDE DETERMINATION ALGORITMen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCTA - Grupo Especial de Ensaios em Vôoen
dc.contributor.departmentITA - Divisão de Eletrônicaen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-03T07:52:38Z
html.description.abstractFor the final evaluation of a GPS attitude determination algorithm, it was determined its true performance in terms of its accuracy, reliability and dynamic response. To accomplish that, a flight test campaign was carried out to validate the attitude determination algorithm. In this phase, the measured aircraft attitude was compared to a reference attitude, to allow the determination of the errors. The system was built using non-dedicated THALES Z-FX airborne GPS receivers and a complete Flight Tests Instrumentation (FTI) System. Each GPS receiver operates synchronized with its internal time base. The FTI measurements are synchronized to an IRIG-B time base. All time bases have their own random walk characteristic. To avoid C/A code ambiguity, when its internal time base approaches ±1ms error from the GPS time, its clock is then corrected causing time and phase observables discontinuities. A multiple time base synchronization process was developed to correlate GPS and FTI data. The results are presented and the residual errors were considered acceptable. These data allowed the determination of the performance and accuracy of the GPS attitude determination algorithm. The tests profiles are fully compliant with the Federal Aviation Administration (FAA) Advisory Circular (AC) 25-7A.


Files in this item

Thumbnail
Name:
ITC_2007_07-26-02.pdf
Size:
726.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record