DEVELOPMENTAL FLIGHT INSTRUMENTATION SYSTEM FOR THE CREW LAUNCH VEHICLE
Affiliation
NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONIssue Date
2006-10
Metadata
Show full item recordRights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster First Stage and a new Upper Stage design with a modified Apollo era J-2 engine. The current schedule has an Ascent Development Test Flight (ADFT-0) with a First Stage and a dummy structurally identical, but without engine, Upper Stage. The ADFT-0 test results will determine if there will be multiple ADFT flights. There will be a minimum of two test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2014. To verify the CLV’s design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystems’ and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the First Stage, the Upper Stage, the Upper Stage Engine and the integration of these elements together. It is anticipated that each of CLV’s elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079