Show simple item record

dc.contributor.advisorSchwiegerling, Jamesen
dc.contributor.authorMahamat, Adoum Hassan
dc.creatorMahamat, Adoum Hassanen
dc.date.accessioned2016-04-08T19:07:42Zen
dc.date.available2016-04-08T19:07:42Zen
dc.date.issued2016en
dc.identifier.urihttp://hdl.handle.net/10150/604813en
dc.description.abstractVolume phase holographic (VPH) gratings have been designed for use in many areas of science and technology such as optical communication, medical imaging, spectroscopy and astronomy. The goal of this dissertation is to design a volume phase holographic grating that provides diffraction efficiencies of at least 70% for the entire visible wavelengths and higher than 90% for red, green, and blue light when the incident light is unpolarized. First, the complete design, simulation and optimization of the volume hologram are presented. The optimization is done using a Monte Carlo analysis to solve for the index modulation needed to provide higher diffraction efficiencies. The solutions are determined by solving the diffraction efficiency equations determined by Kogelnik's two wave coupled-wave theory. The hologram is further optimized using the rigorous coupled-wave analysis to correct for effects of absorption omitted by Kogelnik's method. Second, the fabrication or recording process of the volume hologram is described in detail. The active region of the volume hologram is created by interference of two coherent beams within the thin film. Third, the experimental set up and measurement of some properties including the diffraction efficiencies of the volume hologram, and the thickness of the active region are conducted. Fourth, the polarimetric response of the volume hologram is investigated. The polarization study is developed to provide insight into the effect of the refractive index modulation onto the polarization state and diffraction efficiency of incident light.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectPolarizationen
dc.subjectSimulation of Holographic Gratingsen
dc.subjectVolume Hologramen
dc.subjectOptical Sciencesen
dc.subjectCharacterization of Volume Hologramen
dc.titleDesign, Simulation, and Optimization of an RGB Polarization Independent Transmission Volume Hologramen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberSchwiegerling, Jamesen
dc.contributor.committeememberMilster, Thomasen
dc.contributor.committeememberNarducci, Frank A.en
dc.contributor.committeememberTakashima, Yuzuruen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.namePh.D.en
refterms.dateFOA2018-06-24T20:19:18Z
html.description.abstractVolume phase holographic (VPH) gratings have been designed for use in many areas of science and technology such as optical communication, medical imaging, spectroscopy and astronomy. The goal of this dissertation is to design a volume phase holographic grating that provides diffraction efficiencies of at least 70% for the entire visible wavelengths and higher than 90% for red, green, and blue light when the incident light is unpolarized. First, the complete design, simulation and optimization of the volume hologram are presented. The optimization is done using a Monte Carlo analysis to solve for the index modulation needed to provide higher diffraction efficiencies. The solutions are determined by solving the diffraction efficiency equations determined by Kogelnik's two wave coupled-wave theory. The hologram is further optimized using the rigorous coupled-wave analysis to correct for effects of absorption omitted by Kogelnik's method. Second, the fabrication or recording process of the volume hologram is described in detail. The active region of the volume hologram is created by interference of two coherent beams within the thin film. Third, the experimental set up and measurement of some properties including the diffraction efficiencies of the volume hologram, and the thickness of the active region are conducted. Fourth, the polarimetric response of the volume hologram is investigated. The polarization study is developed to provide insight into the effect of the refractive index modulation onto the polarization state and diffraction efficiency of incident light.


Files in this item

Thumbnail
Name:
azu_etd_14406_sip1_m.pdf
Size:
8.104Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record