• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Surface Engineering and Synthesis of Graphene and Fullerene Based Nanostructures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14391_sip1_m.pdf
    Size:
    16.41Mb
    Format:
    PDF
    Download
    Author
    Gnanaprakasa, Tony Jefferson
    Issue Date
    2016
    Keywords
    Fullerene based Superstructures
    Graphene
    Graphite Intercalation Compounds - Intercalation Chemistry
    Self-assembly of Nanomaterials
    Synthesis of Carbon Nanostructures
    Materials Science & Engineering
    Chemical Vapor Deposition
    Advisor
    Muralidharan, Krishna
    Raghavan, Srini
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 04-Jan-2017
    Abstract
    Graphene is a two-dimensional carbon structure that exhibits remarkable structure-property relations. Consequently, there has been immense effort undertaken towards developing methods for graphene synthesis. Chemical vapor deposition (CVD) and chemical exfoliation from colloidal suspensions are two common methods used for obtaining graphene films. However, the underlying experimental conditions have to be carefully optimized in order to obtain graphene films of controllable thickness and morphology. In this context, a significant part of this dissertation was devoted towards developing and improving current CVD-based and chemical exfoliation based methods for synthesizing high quality graphene films. Specifically, in the CVD based procedure for growing graphene on copper, the effect of surface pretreatment of copper was investigated and the quality of graphene grown using two different pretreatment procedures was compared and analyzed. In particular, graphene grown on electropolished copper (EP-Cu) was analyzed with respect to its surface morphology, surface roughness and thickness, and compared with graphene grown on as cold-rolled acetic acid cleaned copper (AA-Cu). It was shown that electropolishing of the Cu substrates prior to graphene growth greatly enhanced the ability to obtain flat, uniform, predominantly single layer graphene surface coverage on copper. The reported surface roughness of the graphene on EP-Cu was found to be much lower than for previously reported systems, suggesting that the electropolishing procedure adopted in this work has great promise as a pretreatment step for Cu substrates used in CVD growth of graphene. Obtaining graphene from colloidal suspensions of graphitic systems was also examined. In this work, an acid (H₂SO₄ + HNO₃) treatment process for intercalating natural graphite flakes was examined and the ability to reversibly intercalate and deintercalate acid ions within graphitic galleries was investigated. More importantly, a rapid-thermal expansion (RTP) processing was developed to thermally expand the acid-treated graphite, followed by exfoliation of predominantly bilayer graphene as well as few layer graphene flakes in an organic solvent (N, N-Dimethylformamide - DMF). The developed method was shown to provide bilayer and few layer graphene flakes in a reliable fashion. Fullerene is another carbon nanostructure that has garnered attention due to unique structure and chemical properties. Recently, there has been increased focus towards harnessing the properties of fullerenes by synthesizing fullerene self-assemblies in the form of extended rods, tubes and more complex shapes. Current methods to synthesize these self-assemblies are either cumbersome, time consuming or expensive. In this context, an alternate, straightforward dip-coating procedure technique to self-assemble equal-sized, faceted, polymerized fullerene nanorods on graphene-based substrates in a rapid fashion was developed. By suitably modifying the kinetics of self-assembly, the ability to reliably control the spatial distribution, size, shape, morphology and chemistry of fullerene nanorods was achieved.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.