A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions.
Author
Kraft, RobertKahn, Allon
Medina-Franco, José L.
Orlowski, Mikayla L.
Baynes, Cayla
López-Vallejo, Fabian
Barnard, Kobus
Maggiora, Gerald M.
Restifo, Linda L.
Affiliation
Department of Neuroscience, University of Arizona, Tucson, AZTorrey Pines Institute for Molecular Studies, Port St Lucie, FL
Department of Computer Science, University of Arizona, Tucson, AZ
BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ
Translational Genomics Research Institute, Phoenix, AZ
Department of Pharmacology and Toxicology, Arizona Health Sciences Center, Tucson, AZ
Departments of Neurology and Cellular & Molecular Medicine, Arizona Health Sciences Center, Tucson, AZ
Center for Insect Science, Arizona Research Laboratories, University of Arizona, Tucson, AZ
Issue Date
2013-01
Metadata
Show full item recordPublisher
The Company of BiologistsCitation
Kraft et al. (2013). A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions. Dis Model Mech 6(1):217-35Journal
Disease Models & MechanismsRights
© 2012 The Author(s). Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).Abstract
The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the 'filagree' phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity) and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity). The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the 'beads-on-a-string' defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery.Description
A first-of-its-kind, proof-of-concept drug screen with implications for two unmet medical needs.ISSN
1754-8411PubMed ID
22917928Sponsors
NIH/NINDS: NS055774; U. of Arizona Center for Insect Science; State of Florida and the Menopause & Women’s Health Research Center (Port St Lucie, FL); NIGMS (Minority Access to Research Careers): T34 GM08718Additional Links
http://dmm.biologists.org/content/6/1/217.longae974a485f413a2113503eed53cd6c53
10.1242/dmm.008243
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2012 The Author(s). Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Related articles
- Phenotypes of Drosophila brain neurons in primary culture reveal a role for fascin in neurite shape and trajectory.
- Authors: Kraft R, Escobar MM, Narro ML, Kurtis JL, Efrat A, Barnard K, Restifo LL
- Issue date: 2006 Aug 23
- Monastrol suppresses invasion and metastasis in human colorectal cancer cells by targeting fascin independent of kinesin-Eg5 pathway.
- Authors: Alburquerque-González B, Montoro-García S, Bernabé-García Á, Bernabé-García M, Campioni-Rodrigues P, Rodríguez-Martínez A, Luque I, Salo T, Pérez-Garrido A, Pérez-Sánchez H, Cayuela ML, Luengo-Gil G, Luchinat E, Postigo-Corrales F, Staderini T, Nicolás FJ, Conesa-Zamora P
- Issue date: 2024 Jun
- Improving fascin inhibitors to block tumor cell migration and metastasis.
- Authors: Han S, Huang J, Liu B, Xing B, Bordeleau F, Reinhart-King CA, Li W, Zhang JJ, Huang XY
- Issue date: 2016 Aug
- p53 controls colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin.
- Authors: Sui X, Zhu J, Tang H, Wang C, Zhou J, Han W, Wang X, Fang Y, Xu Y, Li D, Chen R, Ma J, Jing Z, Gu X, Pan H, He C
- Issue date: 2015 Sep 8
- Migrastatin analogues target fascin to block tumour metastasis.
- Authors: Chen L, Yang S, Jakoncic J, Zhang JJ, Huang XY
- Issue date: 2010 Apr 15