We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorShockey, Bruce
dc.date.accessioned2016-04-14T19:20:17Zen
dc.date.available2016-04-14T19:20:17Zen
dc.date.issued2003-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605361en
dc.descriptionInternational Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractIn many spacecraft receiver applications, the Fast Fourier Transform (FFT) provides a powerful tool for measuring the amplitude and frequency of an unmodulated RF signal. By increasing the FFT acquisition time, tiny signals can be coaxed from the noise and their frequency measured by determining which frequency bin the signal energy appears. The greater the acquisition time, the narrower the bin bandwidth and the more accurate the frequency measurement. In modern satellite operations it is often desirable for the receiver to measure the frequency of a carrier which is modulated with BPSK data. The presence of the BPSK data limits the FFT acquisition time since the signal may switch polarities a number of times while the FFT samples are being acquired. This polarity switching spreads the signal energy into multiple frequency bins making frequency measurement difficult or impossible. The Bit Templating Technique, used for the first time in the CMC Electronics Cincinnati TDRSS / BPSK Spacecraft Receiver, collects the modulated waveform energy back into a signal bin so that accurate amplitude and frequency information can be calculated.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectBit Templatingen
dc.subjectSatellite Communicationsen
dc.subjectDigital Signal Processingen
dc.subjectFast Fourier Transformsen
dc.titleFFT Bit Templating – A Technique for Making Amplitude and Frequency Measurements of a BPSK Modulated Signalen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentCMC Electronics Cincinnatien
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-16T10:12:47Z
html.description.abstractIn many spacecraft receiver applications, the Fast Fourier Transform (FFT) provides a powerful tool for measuring the amplitude and frequency of an unmodulated RF signal. By increasing the FFT acquisition time, tiny signals can be coaxed from the noise and their frequency measured by determining which frequency bin the signal energy appears. The greater the acquisition time, the narrower the bin bandwidth and the more accurate the frequency measurement. In modern satellite operations it is often desirable for the receiver to measure the frequency of a carrier which is modulated with BPSK data. The presence of the BPSK data limits the FFT acquisition time since the signal may switch polarities a number of times while the FFT samples are being acquired. This polarity switching spreads the signal energy into multiple frequency bins making frequency measurement difficult or impossible. The Bit Templating Technique, used for the first time in the CMC Electronics Cincinnati TDRSS / BPSK Spacecraft Receiver, collects the modulated waveform energy back into a signal bin so that accurate amplitude and frequency information can be calculated.


Files in this item

Thumbnail
Name:
ITC_2003_03-06-05.pdf
Size:
171.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record