ANALYSIS OF CYCLOSTATIONARY AND SPECTRAL CORRELATION OF FEHER-KEYING (FK) SIGNALS
Affiliation
University of SuwonUniversity of California
Digcom, Inc.
Issue Date
2002-10Keywords
Feher Keying (FK)autocorrelation
power spectral density (PSD)
cyclostationarity
bit error rate (BER)
Metadata
Show full item recordRights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Feher Keying (FK) signals are clock shaped baseband waveforms with the potential to attain very high spectral efficiencies. Two FK signals which have different level rectangular waveforms (named as FK-1) or sinusoidal waveforms (named as FK-2) for two binary symbols are considered in this paper. These signals have periodic components in the time domain. Therefore they have cyclostationary properties. This means that spectral correlation exists in the frequency domain. For each type of waveforms, spectral correlation has been investigated. FK signals can be expressed mathematically into two parts in the frequency domain – discrete part and continuous part. The discrete part has one or more discrete impulse(s) in their spectra and the continuous part has periodically the same shape of harmonics in their spectra. The correlations of their spectra have been obtained mathematically and by simulation. It is shown that FK signals have high correlation related to the symbol rate. Finally, some suggestions how these properties can be used to improve their performance by devising better demodulators are discussed. These properties can be used for interference rejection at the receiver, which results in low bit error rate performance.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079