We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorBlott, Michaela
dc.date.accessioned2016-04-18T17:16:46Zen
dc.date.available2016-04-18T17:16:46Zen
dc.date.issued2004-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605779en
dc.descriptionInternational Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, Californiaen_US
dc.description.abstractMIL-STD-1553 has served the flight community well. However, in recent years several new high-speed bus standards have emerged that outperform 1553 in various respects such as data throughput and increased address space. During this time, mission requirements - including video and audio - have become more data intensive. Although some of these busses were not initially designed for the avionics industry (such as Ethernet, FireWire, and FibreChannel), they are potentially of interest as high-speed commercial off-the-shelf (COTS) solutions for both set-up and data acquisition. These busses offer not only improved overall system performance, in terms of aggregate sampling rates, but also simplify existing data acquisition system architectures. They require fewer high-bandwidth links which can serve for both set-up and data. This paper examines some of these issues, focusing in particular on IEEE1394, better known as FireWire.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectIEEE-1394en
dc.subjectMIL-STD-1553en
dc.subjectCOTSen
dc.subjectDAUen
dc.subjectFibreChannelen
dc.subjectEtherneten
dc.titleFIREWIRE: THE NEW 1553?en_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentACRA CONTROLen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T09:00:49Z
html.description.abstractMIL-STD-1553 has served the flight community well. However, in recent years several new high-speed bus standards have emerged that outperform 1553 in various respects such as data throughput and increased address space. During this time, mission requirements - including video and audio - have become more data intensive. Although some of these busses were not initially designed for the avionics industry (such as Ethernet, FireWire, and FibreChannel), they are potentially of interest as high-speed commercial off-the-shelf (COTS) solutions for both set-up and data acquisition. These busses offer not only improved overall system performance, in terms of aggregate sampling rates, but also simplify existing data acquisition system architectures. They require fewer high-bandwidth links which can serve for both set-up and data. This paper examines some of these issues, focusing in particular on IEEE1394, better known as FireWire.


Files in this item

Thumbnail
Name:
ITC_2004_04-17-02.pdf
Size:
194.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record