Show simple item record

dc.contributor.advisorRice, Michaelen
dc.contributor.authorPerrins, Erik
dc.date.accessioned2016-04-18T18:57:20Zen
dc.date.available2016-04-18T18:57:20Zen
dc.date.issued2004-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605802en
dc.descriptionInternational Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, Californiaen_US
dc.description.abstractSince the Advanced Range Telemetry (ARTM) program first proposed the use of multi-h continuous phase modulation (ARTM CPM), there has been much work done to characterize the performance of this waveform. The ideal performance of ARTM CPM is well understood and has been shown to be close to that of PCM/FM and the Tier I modulations (FQPSK-B and SOQPSK). In practice, however, ARTM CPM is very sensitive to phase noise at the receiver and also requires very long synchronization times. These difficulties can be addressed with additional link margin. In this paper we propose an alternate set of modulation indexes which are approximately 2 dB superior in performance with respect to the original set (we use minimum distance concepts to characterize the performance of each set). Brief consideration is also given to frequency pulses other than the existing raised cosine (RC) pulse. We also characterize the effect these new parameters have on the signal spectrum. This 2 dB gain gives ARTM CPM some of the system flexibility currently enjoyed by PCM/FM and the Tier I modulations. One such option is to realize this 2 dB gain using low-complexity coherent detection schemes, which we demonstrate; we also show a noncoherent detection scheme that performs within 2 dB of optimum (or in other words, it has the same performance as the existing coherent detector for ARTM CPM). This is significant since noncoherent detection avoids some of the synchronization burdens that have plagued ARTM CPM thus far.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleAN ALTERNATE PROPOSAL FOR ARTM CPMen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentBrigham Young Universityen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-04-26T17:25:31Z
html.description.abstractSince the Advanced Range Telemetry (ARTM) program first proposed the use of multi-h continuous phase modulation (ARTM CPM), there has been much work done to characterize the performance of this waveform. The ideal performance of ARTM CPM is well understood and has been shown to be close to that of PCM/FM and the Tier I modulations (FQPSK-B and SOQPSK). In practice, however, ARTM CPM is very sensitive to phase noise at the receiver and also requires very long synchronization times. These difficulties can be addressed with additional link margin. In this paper we propose an alternate set of modulation indexes which are approximately 2 dB superior in performance with respect to the original set (we use minimum distance concepts to characterize the performance of each set). Brief consideration is also given to frequency pulses other than the existing raised cosine (RC) pulse. We also characterize the effect these new parameters have on the signal spectrum. This 2 dB gain gives ARTM CPM some of the system flexibility currently enjoyed by PCM/FM and the Tier I modulations. One such option is to realize this 2 dB gain using low-complexity coherent detection schemes, which we demonstrate; we also show a noncoherent detection scheme that performs within 2 dB of optimum (or in other words, it has the same performance as the existing coherent detector for ARTM CPM). This is significant since noncoherent detection avoids some of the synchronization burdens that have plagued ARTM CPM thus far.


Files in this item

Thumbnail
Name:
ITC_2004_04-22-05.pdf
Size:
174.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record