Show simple item record

dc.contributor.authorLeite, Nelson Paiva Oliveira
dc.contributor.authorLopes, Leonardo Mauricio de Faria
dc.contributor.authorWalter, Fernando
dc.date.accessioned2016-04-19T16:03:20Zen
dc.date.available2016-04-19T16:03:20Zen
dc.date.issued2010-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605926en
dc.descriptionITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractOne of the most important characteristics of an aircraft is its capability to return to its stable trimmed flight state after the occurrence of a disturbance or gust without the pilot intervention. The evaluation of such behavior, known as the aircraft stability, is divided into three sections: Lateral; Directional; and Longitudinal stabilities. The determination of the stability of an experimental aircraft requires the execution of a Flight Test Campaign (FTC). For the stability FTC the test bed should be equipped with a complete Flight Test Instrumentation (FTI) System which is typically composed by: a Pulse Code Modulation (PCM) Data Acquisition System (DAS); A sensor set; An airborne transmitter; and A data recorder. In the real-time operations, live data received over the Telemetry Link, that are processed, distributed and displayed at the Ground Telemetry System (GTS) enhances the FTC safety level and efficiency. The due to the lack of reliability, recorded data is retrieved in the post mission operations to allow the execution of data reduction analysis. This process is time consuming because recorded data has to be downloaded, converted to Engineering Units (EU), sliced, filtered and processed. The reason for the usage of this less efficient process relies in the fact that the real-time Telemetry data is less reliable as compared to recorded data (i.e. noisier). The upcoming iNET technology could provide a very reliable Telemetry Link. Therefore the data reduction analysis can be executed with live telemetry data in quasi-real time after the receipt of all valid tests points. In this sense the Brazilian Flight Test Group (GEEV) along with EMBRAER and with the support of Financiadora de Estudos e Projetos (FINEP) started the development of several applications. This paper presents the design of a tool used in the Longitudinal Static Stability Flight Tests Campaign. The application receives the Telemetry data over either a TCP/IP or a SCRAMnet Network, performs data analysis and test point validation in real time and when all points are gathered it performs the data reduction analysis and automatically creates Hyper Terminal Markup Language (HTML) formatted tests reports. The tool evaluation was executed with the instruction flights for the 2009 Brazilian Flight Test School (CEV). The result shows an efficiency gain for the overall FTC.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectFlight Testsen
dc.subjectLongitudinal Stabilityen
dc.subjectTelemetryen
dc.subjectDecision Aid Toolen
dc.titleThe Design of an Application Used for Aircraft Stability Evaluationen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentGrupo Especial de Ensaios em Vôoen
dc.contributor.departmentInstituto Tecnológico de Aeronáuticaen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T09:03:25Z
html.description.abstractOne of the most important characteristics of an aircraft is its capability to return to its stable trimmed flight state after the occurrence of a disturbance or gust without the pilot intervention. The evaluation of such behavior, known as the aircraft stability, is divided into three sections: Lateral; Directional; and Longitudinal stabilities. The determination of the stability of an experimental aircraft requires the execution of a Flight Test Campaign (FTC). For the stability FTC the test bed should be equipped with a complete Flight Test Instrumentation (FTI) System which is typically composed by: a Pulse Code Modulation (PCM) Data Acquisition System (DAS); A sensor set; An airborne transmitter; and A data recorder. In the real-time operations, live data received over the Telemetry Link, that are processed, distributed and displayed at the Ground Telemetry System (GTS) enhances the FTC safety level and efficiency. The due to the lack of reliability, recorded data is retrieved in the post mission operations to allow the execution of data reduction analysis. This process is time consuming because recorded data has to be downloaded, converted to Engineering Units (EU), sliced, filtered and processed. The reason for the usage of this less efficient process relies in the fact that the real-time Telemetry data is less reliable as compared to recorded data (i.e. noisier). The upcoming iNET technology could provide a very reliable Telemetry Link. Therefore the data reduction analysis can be executed with live telemetry data in quasi-real time after the receipt of all valid tests points. In this sense the Brazilian Flight Test Group (GEEV) along with EMBRAER and with the support of Financiadora de Estudos e Projetos (FINEP) started the development of several applications. This paper presents the design of a tool used in the Longitudinal Static Stability Flight Tests Campaign. The application receives the Telemetry data over either a TCP/IP or a SCRAMnet Network, performs data analysis and test point validation in real time and when all points are gathered it performs the data reduction analysis and automatically creates Hyper Terminal Markup Language (HTML) formatted tests reports. The tool evaluation was executed with the instruction flights for the 2009 Brazilian Flight Test School (CEV). The result shows an efficiency gain for the overall FTC.


Files in this item

Thumbnail
Name:
ITC_2010_10-12-02.pdf
Size:
839.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record