Show simple item record

dc.contributor.authorWilliams, Steve
dc.date.accessioned2016-04-19T17:38:05Zen
dc.date.available2016-04-19T17:38:05Zen
dc.date.issued2010-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/605960en
dc.descriptionITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractFlight and weapons test ranges typically include multiple Telemetry Sites (TM Sites) that receive telemetry from platforms being flown on the range. Received telemetry is processed and forwarded by them to a Range Control Center (RCC) which is responsible for flight safety, and for delivering captured best source telemetry to those responsible for the platform being flown. When range equipment or operations are impaired in their ability to receive telemetry or process it correctly, expensive and/or one-of-a-kind platforms may have to be destroyed in flight to maintain safety margins, resulting in substantial monetary loss, valuable data loss, schedule disruption and potential safety concerns. Less severe telemetry disruptions can also result in missing or garbled telemetry data, negatively impacting platform test, analysis and design modification cycles. This paper provides a high level overview of a physics-compliant Range Test System (RTS) built upon Radio Frequency (RF) Channel Simulator technology. The system is useful in verifying range operation with most range equipment configured to function as in an actual mission. The system generates RF signals with appropriate RF link effects associated with range and range rate between the flight platform and multiple telemetry tracking stations. It also emulates flight and RF characteristics of the platform, to include signal parameters, antenna modeling, body shielding and accurate flight parameters. The system is useful for hardware, software, firmware and process testing, regression testing, and fault detection test, as well as range customer assurance, and range personnel training against nominal and worst-case conditions.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectRange Test Systemen
dc.subjectChannel Simulationen
dc.subjectTelemetry Site Testen
dc.subjectRange Control Center Testen
dc.subjectRange Testing at RFen
dc.titleAdvanced Test Range Verification at RF Without Flightsen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentRT Logicen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-07-18T01:20:29Z
html.description.abstractFlight and weapons test ranges typically include multiple Telemetry Sites (TM Sites) that receive telemetry from platforms being flown on the range. Received telemetry is processed and forwarded by them to a Range Control Center (RCC) which is responsible for flight safety, and for delivering captured best source telemetry to those responsible for the platform being flown. When range equipment or operations are impaired in their ability to receive telemetry or process it correctly, expensive and/or one-of-a-kind platforms may have to be destroyed in flight to maintain safety margins, resulting in substantial monetary loss, valuable data loss, schedule disruption and potential safety concerns. Less severe telemetry disruptions can also result in missing or garbled telemetry data, negatively impacting platform test, analysis and design modification cycles. This paper provides a high level overview of a physics-compliant Range Test System (RTS) built upon Radio Frequency (RF) Channel Simulator technology. The system is useful in verifying range operation with most range equipment configured to function as in an actual mission. The system generates RF signals with appropriate RF link effects associated with range and range rate between the flight platform and multiple telemetry tracking stations. It also emulates flight and RF characteristics of the platform, to include signal parameters, antenna modeling, body shielding and accurate flight parameters. The system is useful for hardware, software, firmware and process testing, regression testing, and fault detection test, as well as range customer assurance, and range personnel training against nominal and worst-case conditions.


Files in this item

Thumbnail
Name:
ITC_2010_10-22-02.pdf
Size:
1017.Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record