Show simple item record

dc.contributor.authorPellarin, Steve
dc.contributor.authorGrossman, Hy
dc.contributor.authorMusteric, Steven
dc.date.accessioned2016-04-20T23:37:02Zen
dc.date.available2016-04-20T23:37:02Zen
dc.date.issued2008-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606224en
dc.descriptionITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractAdding an instrumentation / telemetry system to a test article has historically required an intrusive installation. Power, wiring, and available space typically present significant challenges. There has been a long-standing need in the test and training community for a non-intrusive, flexible and modular instrumentation and telemetry system that can be installed on an aircraft or other test article without the need for permanent modifications. In addition, as available space in aircraft weapon bays, small weapons, and unmanned vehicles becomes a premium, the miniaturization of remote sensors and telemetry units becomes critical. This paper describes the current status of the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the progress to date in fielding an operational, wireless sensor system that may be installed on the aircraft skin using an Electro-Cleavable adhesive as an alternative to conventional mounting methods. The wireless sensor utilizes the Wireless Communications Standard for Wireless Personal Area Network™ (WPAN™) IEEE 802.15 Working Group standard (commonly referred to as Bluetooth) to establish communication between the sensor and controller modules. Results of aircraft ground testing for EMI compatibility with aircraft systems will be presented. It is also expected that actual flight test results will be available by the time the paper goes to publication.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectNetworken
dc.subjectMiniaturizeden
dc.subjectNon-Intrusiveen
dc.subjectWireless sensoren
dc.subjectBluetoothen
dc.subjectZigbeeen
dc.subjectIEEE 802.15.4en
dc.subjectData Acquisitionen
dc.titleWireless Sensor System for Airborne Applicationsen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentTeletronics Technology Corporationen
dc.contributor.departmentEglin Air Force Baseen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-16T17:47:49Z
html.description.abstractAdding an instrumentation / telemetry system to a test article has historically required an intrusive installation. Power, wiring, and available space typically present significant challenges. There has been a long-standing need in the test and training community for a non-intrusive, flexible and modular instrumentation and telemetry system that can be installed on an aircraft or other test article without the need for permanent modifications. In addition, as available space in aircraft weapon bays, small weapons, and unmanned vehicles becomes a premium, the miniaturization of remote sensors and telemetry units becomes critical. This paper describes the current status of the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the progress to date in fielding an operational, wireless sensor system that may be installed on the aircraft skin using an Electro-Cleavable adhesive as an alternative to conventional mounting methods. The wireless sensor utilizes the Wireless Communications Standard for Wireless Personal Area Network™ (WPAN™) IEEE 802.15 Working Group standard (commonly referred to as Bluetooth) to establish communication between the sensor and controller modules. Results of aircraft ground testing for EMI compatibility with aircraft systems will be presented. It is also expected that actual flight test results will be available by the time the paper goes to publication.


Files in this item

Thumbnail
Name:
ITC_2008_08-22-02.pdf
Size:
395.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record