Show simple item record

dc.contributor.authorYoung, Ronald E.
dc.date.accessioned2016-04-21T15:47:52Zen
dc.date.available2016-04-21T15:47:52Zen
dc.date.issued1966-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606337en
dc.descriptionInternational Telemetering Conference Proceedings / October 18-20, 1966 / Ambassador Hotel, Los Angeles, Californiaen_US
dc.description.abstractThe methods presently utilized for magnetic recording of radar data are explained with reference to basic radar types. The PPI radar has a time continuous video signal and generally requires a transient free recorder of moderate data bandwidth. In addition, means must be provided to record the azimuth information in either synchro, sine-cosine or digital form. Such means are available and recommended approaches for each type of data are given. Time discontinuous radar such as the missile tracking monopulse group may utilize recorders normally designed for video service if certain pulse spacing criteria are observed. The wider data bandwidth of this type of signal makes the use of rotary head recorders mandatory. There are many applications for radar recording. Some of those described include operator training, debriefing and scoring and operational evaluation of the radar facility. The radar recorder can be a significant aid in data analysis for signature determination of satellites and planetary mapping. The radar recorder also furnishes a close facsimile of the operating radar signal for system evaluation when there are no targets to observe or when the main radar is shut down for any reason. As an illustration of the application of magnetic recording to the radar system an airborne data acquisition recorder is described along with a companion ground reproducer. These two units are presently in use in the evaluation of an airborne radar system and offer significant advantages over previously available recording equipment. The development of time base stable magnetic tape recorders capable of handling data bandwidth in excess of 5 MHz has added another facet to the instrumentation field - that of recording radar data on a real time basis for analysis at a later time. The discussion that follows illustrates the methods used in magnetic recording of radar data and cites a typical recording system.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleMagnetic Recording of Radar Dataen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentAmpex Corporationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T09:15:00Z
html.description.abstractThe methods presently utilized for magnetic recording of radar data are explained with reference to basic radar types. The PPI radar has a time continuous video signal and generally requires a transient free recorder of moderate data bandwidth. In addition, means must be provided to record the azimuth information in either synchro, sine-cosine or digital form. Such means are available and recommended approaches for each type of data are given. Time discontinuous radar such as the missile tracking monopulse group may utilize recorders normally designed for video service if certain pulse spacing criteria are observed. The wider data bandwidth of this type of signal makes the use of rotary head recorders mandatory. There are many applications for radar recording. Some of those described include operator training, debriefing and scoring and operational evaluation of the radar facility. The radar recorder can be a significant aid in data analysis for signature determination of satellites and planetary mapping. The radar recorder also furnishes a close facsimile of the operating radar signal for system evaluation when there are no targets to observe or when the main radar is shut down for any reason. As an illustration of the application of magnetic recording to the radar system an airborne data acquisition recorder is described along with a companion ground reproducer. These two units are presently in use in the evaluation of an airborne radar system and offer significant advantages over previously available recording equipment. The development of time base stable magnetic tape recorders capable of handling data bandwidth in excess of 5 MHz has added another facet to the instrumentation field - that of recording radar data on a real time basis for analysis at a later time. The discussion that follows illustrates the methods used in magnetic recording of radar data and cites a typical recording system.


Files in this item

Thumbnail
Name:
ITC_1966_66-02-4.pdf
Size:
297.4Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record