A Double Sideband-Quadrature Carrier Multiplex Telemetry System
dc.contributor.author | Gutwein, Joseph M. | |
dc.contributor.author | Annese, Jerald F. | |
dc.date.accessioned | 2016-04-21T22:53:01Z | en |
dc.date.available | 2016-04-21T22:53:01Z | en |
dc.date.issued | 1968-10 | en |
dc.identifier.issn | 0884-5123 | en |
dc.identifier.issn | 0074-9079 | en |
dc.identifier.uri | http://hdl.handle.net/10150/606549 | en |
dc.description | International Telemetering Conference Proceedings / October 08-11, 1968 / Ambassador Hotel, Los Angeles, California | en_US |
dc.description.abstract | A novel FDM telemetry technique was developed consisting of a double sideband-quadrature carrier multiplexing system (DSB-QCM). Each subchannel in the DSB-QCM system carries two completely overlapping DSB data signals, one double-sideband modulated on the subcarrier itself, and the other on a quadrature version of the subcarrier. Demodulation with cophasal and quadrature subcarriers enables simultaneous data extraction from each channel within acceptable distortion levels. The feasibility and practicability of such a DSB-QCM telemetry system is discussed in this paper. Crosstalk levels between the quadrature multiplexed channels were measured and guardband requirements between adjacent channels were assessed for a modem comprised of three pairs of DSB-QCM channels. Crosstalk levels between uniformly loaded DSB -QCM channels were below 2% and guardband requirements equivalent to conventional DSB systems were observed. The DSB-QCM performance was also examined as a function of input SNR with two competing subcarrier synchronization methods. Subcarrier synchronization by means of synthesized reference tones coherently derived from a single pilot was demonstrated to be superior in The presence of noise to a channel reference approach in which each data channel must synchronize its own subcarrier. The major conclusion from this investigation is that DSB-QCM/FM telemetry combines the advantages of both SSB/FM and DSB/FM by accommodating as many data channels as SSB/FM but with low distortion data processing and the dc data response characteristic of DSB/FM. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | A Double Sideband-Quadrature Carrier Multiplex Telemetry System | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | ADCOM | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-06-29T09:45:18Z | |
html.description.abstract | A novel FDM telemetry technique was developed consisting of a double sideband-quadrature carrier multiplexing system (DSB-QCM). Each subchannel in the DSB-QCM system carries two completely overlapping DSB data signals, one double-sideband modulated on the subcarrier itself, and the other on a quadrature version of the subcarrier. Demodulation with cophasal and quadrature subcarriers enables simultaneous data extraction from each channel within acceptable distortion levels. The feasibility and practicability of such a DSB-QCM telemetry system is discussed in this paper. Crosstalk levels between the quadrature multiplexed channels were measured and guardband requirements between adjacent channels were assessed for a modem comprised of three pairs of DSB-QCM channels. Crosstalk levels between uniformly loaded DSB -QCM channels were below 2% and guardband requirements equivalent to conventional DSB systems were observed. The DSB-QCM performance was also examined as a function of input SNR with two competing subcarrier synchronization methods. Subcarrier synchronization by means of synthesized reference tones coherently derived from a single pilot was demonstrated to be superior in The presence of noise to a channel reference approach in which each data channel must synchronize its own subcarrier. The major conclusion from this investigation is that DSB-QCM/FM telemetry combines the advantages of both SSB/FM and DSB/FM by accommodating as many data channels as SSB/FM but with low distortion data processing and the dc data response characteristic of DSB/FM. |