Show simple item record

dc.contributor.authorGunawardana, Upul
dc.contributor.authorKosbar, Kurt
dc.date.accessioned2016-04-22T22:36:43Zen
dc.date.available2016-04-22T22:36:43Zen
dc.date.issued1999-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606804en
dc.descriptionInternational Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractIn this paper, a new coherent correlation-loop architecture for tracking direct-sequence spread-spectrum signals is proposed. In the proposed correlation loop model, the mean-square tracking error is minimized by varying the cross-correlation function between the received signal and the locally generated signal. The locally generated signal is produced by passing a replica of the transmitted signal through a linear time-invariant filter, which is termed the VCC filter. The issue of bandwidth of a correlation loop is addressed and a bandwidth definition for comparative purposes is introduced. The filter characteristics to minimize the tracking errors are determined using numerical optimization algorithms. This work demonstrates that the amplitude response of the VCC filter is a function of the input signal-to-noise ratio (SNR). In particular, the optimum filter does not replicate a differentiator at finite signal-to-noise ratio as is sometimes assumed. The optimal filter characteristics and the knowledge of the input SNR can be combined to produce a device that has very low probability of loosing lock.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectPN code trackingen
dc.subjectDLLen
dc.subjecttime tracking loopsen
dc.titleOPTIMIZATION OF REFERENCE WAVEFORM FILTERS IN COHERENT DELAY LOCKED LOOPSen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentMotorola, Inc.en
dc.contributor.departmentUniversity of Missourien
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-17T18:43:28Z
html.description.abstractIn this paper, a new coherent correlation-loop architecture for tracking direct-sequence spread-spectrum signals is proposed. In the proposed correlation loop model, the mean-square tracking error is minimized by varying the cross-correlation function between the received signal and the locally generated signal. The locally generated signal is produced by passing a replica of the transmitted signal through a linear time-invariant filter, which is termed the VCC filter. The issue of bandwidth of a correlation loop is addressed and a bandwidth definition for comparative purposes is introduced. The filter characteristics to minimize the tracking errors are determined using numerical optimization algorithms. This work demonstrates that the amplitude response of the VCC filter is a function of the input signal-to-noise ratio (SNR). In particular, the optimum filter does not replicate a differentiator at finite signal-to-noise ratio as is sometimes assumed. The optimal filter characteristics and the knowledge of the input SNR can be combined to produce a device that has very low probability of loosing lock.


Files in this item

Thumbnail
Name:
ITC_1999_99-01-1.pdf
Size:
238.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record