Show simple item record

dc.contributor.authorPeavey, B.
dc.date.accessioned2016-04-25T16:30:45Zen
dc.date.available2016-04-25T16:30:45Zen
dc.date.issued1970-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/606971en
dc.descriptionInternational Telemetering Conference Proceedings / October 13-15, 1970 / International Hotel, Los Angeles, Californiaen_US
dc.description.abstractPCM Bit Synchronizer/Signal Conditioners (BSSC) possess 3 basic performance characteristics which directly affect the processing of PCM telemetry data. These characteristics are: bit error rate (BER), bit slippage rate (BSR), and bit sync acquisition (BSA). This paper describes proven methods to meaningfully, and accurately measure these characteristics with particular emphasis on BSR and BSA. These methods require relatively simple and inexpensive procedures and instrumentation, and could be used by manufacturers and users to evaluate and acceptance test BSSC. The basic principle employed in these methods is "fixed threshold frame synchronization" with a unique strategy. Thus, there is no requirement for bit delay between the reference and BSSC output data, and synchronization of the reference data in the comparator with the BSSC output data takes place automatically. Moreover, this approach to testing BSSC represents the actual situation in which the BSSC would be operating as part of the telemetry data system, and hence would provide a direct measure of system performance. In actual application, these methods proved to be very effective and accurate for input SNR of E(b) /N(0) > O dB, and slightly less accurate for E(b) /N(0) < O dB (data having more than 10% errors). In general, BSA and BSR measurement accuracies of 20-30 bits can be achieved. A detailed discussion of accuracy is presented in the paper. In addition, the BSR and BER measurement methods are applicable to assessing the performance of tape recorders (TR) as it affects the actual system performance, rather than just the peculiar TR characteristics of TBE (time base error), bit dropout, and wow and flutter.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titlePerformance Evaluation Medthos for PCM Bit Synchronizer/Signal Conditionersen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentNASA/Goddard Space Flight Centeren
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-09-11T09:32:25Z
html.description.abstractPCM Bit Synchronizer/Signal Conditioners (BSSC) possess 3 basic performance characteristics which directly affect the processing of PCM telemetry data. These characteristics are: bit error rate (BER), bit slippage rate (BSR), and bit sync acquisition (BSA). This paper describes proven methods to meaningfully, and accurately measure these characteristics with particular emphasis on BSR and BSA. These methods require relatively simple and inexpensive procedures and instrumentation, and could be used by manufacturers and users to evaluate and acceptance test BSSC. The basic principle employed in these methods is "fixed threshold frame synchronization" with a unique strategy. Thus, there is no requirement for bit delay between the reference and BSSC output data, and synchronization of the reference data in the comparator with the BSSC output data takes place automatically. Moreover, this approach to testing BSSC represents the actual situation in which the BSSC would be operating as part of the telemetry data system, and hence would provide a direct measure of system performance. In actual application, these methods proved to be very effective and accurate for input SNR of E(b) /N(0) > O dB, and slightly less accurate for E(b) /N(0) < O dB (data having more than 10% errors). In general, BSA and BSR measurement accuracies of 20-30 bits can be achieved. A detailed discussion of accuracy is presented in the paper. In addition, the BSR and BER measurement methods are applicable to assessing the performance of tape recorders (TR) as it affects the actual system performance, rather than just the peculiar TR characteristics of TBE (time base error), bit dropout, and wow and flutter.


Files in this item

Thumbnail
Name:
ITC_1970_70-08-1.pdf
Size:
347.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record