Quartz Crystals Units for High G Environments
dc.contributor.author | Bernstein, M. | |
dc.date.accessioned | 2016-04-25T16:30:52Z | en |
dc.date.available | 2016-04-25T16:30:52Z | en |
dc.date.issued | 1970-10 | en |
dc.identifier.issn | 0884-5123 | en |
dc.identifier.issn | 0074-9079 | en |
dc.identifier.uri | http://hdl.handle.net/10150/606992 | en |
dc.description | International Telemetering Conference Proceedings / October 13-15, 1970 / International Hotel, Los Angeles, California | en_US |
dc.description.abstract | Quartz crystal units are commonly used to achieve frequency accuracy of the order of 100 parts per million or better. The usual crystal mechanical environments are quite benign compared with those encountered In high g telemetry, however, and the normal shock tests are only 100 g's. The preliminary, design of a ruggedized high frequency crystal unit is shown as well as test date on the behavior of these units when subjected to 15,000 g's of impact shock. A crystal resonator is quite fragile since at 20 MHz an AT resonator is only 3 thousandths of an inch in thickness. Higher frequency units appear to have a g limit only slightly in excess of 20,000 g's. At lower frequencies, the resonator is not the limiting element but the supports and bonds become unreliable. A trade-off must be made between a very stiff support, which will increase the acceptable g level, and the concomitant frequency instability due to changes in mechanical stress on the quartz resonator. These stress changes can be caused both by differential thermal expansion of the mount and quartz as well as by shock Induced effects. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | Quartz Crystals Units for High G Environments | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | U.S. Army Electronics Command | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-08-15T06:52:07Z | |
html.description.abstract | Quartz crystal units are commonly used to achieve frequency accuracy of the order of 100 parts per million or better. The usual crystal mechanical environments are quite benign compared with those encountered In high g telemetry, however, and the normal shock tests are only 100 g's. The preliminary, design of a ruggedized high frequency crystal unit is shown as well as test date on the behavior of these units when subjected to 15,000 g's of impact shock. A crystal resonator is quite fragile since at 20 MHz an AT resonator is only 3 thousandths of an inch in thickness. Higher frequency units appear to have a g limit only slightly in excess of 20,000 g's. At lower frequencies, the resonator is not the limiting element but the supports and bonds become unreliable. A trade-off must be made between a very stiff support, which will increase the acceptable g level, and the concomitant frequency instability due to changes in mechanical stress on the quartz resonator. These stress changes can be caused both by differential thermal expansion of the mount and quartz as well as by shock Induced effects. |