Show simple item record

dc.contributor.authorHoffman, L. B.
dc.date.accessioned2016-04-25T17:16:11Zen
dc.date.available2016-04-25T17:16:11Zen
dc.date.issued1971-09en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607059en
dc.descriptionInternational Telemetering Conference Proceedings / September 27-29, 1971 / Washington Hilton Hotel, Washington, D.C.en_US
dc.description.abstractComputer simulation studies of the hybrid pull-up bootstrap decoding algorithm hive -been conducted using a constraint length 24, nonsystematic, rate 1/2 convolutional code for the symmetric channel with both binary and 8-level quantized outputs. Computational performance was used to measure the effect of several decoder parameters and determine practical operating constraints. Results reveal that the track length may be reduced to 500 information bits with small degradation in performance. The optimum number of tracks per block was found to be in the range of 7 to 11. An effective technique was devised to efficiently allocate computational effort and identify reliably decoded data sections. Long simulations indicate that a practical bootstrap decoding configuration has a computational performance about 1.0 dB better than sequential decoding and an output bit error rate about 2.5 x10⁻⁶ near the R(comp) point.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titlePerformance Results for a Hybrid Coding Systemen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentNASAen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-15T01:56:22Z
html.description.abstractComputer simulation studies of the hybrid pull-up bootstrap decoding algorithm hive -been conducted using a constraint length 24, nonsystematic, rate 1/2 convolutional code for the symmetric channel with both binary and 8-level quantized outputs. Computational performance was used to measure the effect of several decoder parameters and determine practical operating constraints. Results reveal that the track length may be reduced to 500 information bits with small degradation in performance. The optimum number of tracks per block was found to be in the range of 7 to 11. An effective technique was devised to efficiently allocate computational effort and identify reliably decoded data sections. Long simulations indicate that a practical bootstrap decoding configuration has a computational performance about 1.0 dB better than sequential decoding and an output bit error rate about 2.5 x10⁻⁶ near the R(comp) point.


Files in this item

Thumbnail
Name:
ITC_1971_71-13-3.pdf
Size:
386.4Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record