Rights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
Optical trackers are often used at the Air Force Flight Test Center (AFFTC) and at other Department of Defense (DoD) ranges to collect video and trajectory data for real-time display and postflight processing. When optical trackers are used in remote areas, pointing data from radar is utilized to enable the trackers to initially acquire targets. To enable the trackers to use radar-pointing data, offsets to true north must first be known. This offset is taken into account given the current position of the optical tracker. During postflight processing, when determining the trajectory of the target, the offsets are also taken into account to produce an accurate trajectory solution. Current methods of determining offsets to true north are time consuming and involve a lot of guesswork. Typically, a map and a known landmark are used to determine the offsets to true north. Another method is to look for the North Star (Polaris) and input an estimated offset. This paper will describe an inexpensive, stand-alone system that utilizes the Global Positioning System (GPS) to determine these offsets. This device may be modified and integrated with other systems that may need to point accurately. For example, a gun barrel on a tank may need to point accurately to within a degree. This device may also be used to accurately position telemetry antennas.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079