Show simple item record

dc.contributor.advisorDe Leon, Phillip L.en
dc.contributor.authorScaife, Bradley J.
dc.date.accessioned2016-04-28T19:38:31Zen
dc.date.available2016-04-28T19:38:31Zen
dc.date.issued1998-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607365en
dc.descriptionInternational Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, Californiaen_US
dc.description.abstractIn any satellite communication, the Doppler shift associated with the satellite’s position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this paper, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on a simple, averaged discrete Fourier transform along with peak detection. We provide simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU’s implementation of NASA’s demand assignment, multiple access (DAMA) service.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectFrequency estimationen
dc.subjectDoppler shifted carrier recoveryen
dc.subjectfast fourier transformen
dc.subjectspread spectrumen
dc.titleDOPPLER SHIFTED SPREAD SPECTRUM CARRIER RECOVERY USING REAL-TIME DSP TECHNIQUESen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentNew Mexico State Universityen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-04-26T06:28:19Z
html.description.abstractIn any satellite communication, the Doppler shift associated with the satellite’s position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this paper, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on a simple, averaged discrete Fourier transform along with peak detection. We provide simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU’s implementation of NASA’s demand assignment, multiple access (DAMA) service.


Files in this item

Thumbnail
Name:
ITC_1998_98-06-3.pdf
Size:
58.77Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record