Show simple item record

dc.contributor.authorNguyen, Tien M.
dc.contributor.authorNguyen, Hung H.
dc.contributor.authorYoh, James
dc.contributor.authorSklar, Dean J.
dc.contributor.authorEng, Thomas
dc.date.accessioned2016-04-29T22:44:51Zen
dc.date.available2016-04-29T22:44:51Zen
dc.date.issued2001-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607603en
dc.descriptionInternational Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractThis paper presents initial results of an investigation on bandwidth efficient waveforms for telemetry, tracking and commands (TT&C). Included in the investigation are waveforms that are currently being considered by the International Consultative Committee for Space Data Systems (CCSDS) and American Institute of Aeronautics and Astronautics (AIAA) for standards, advanced waveforms and others that have the potential to become future standards. The goal of this investigation is to recommend a suite of bandwidth efficient modulation schemes for further investigation. This suite of modulation scheme should be suitable for various TT&C applications with data rates ranging from a few hundreds Bit Per Second (bps) to a few hundreds Mega bps (Mbps). First, the philosophy of waveform evaluation is described. The description includes a list of waveform attributes leading to quantitative and qualitative figures of merit for bandwidth efficient waveforms. Then quantitative results for the two most important waveform attributes (bandwidth efficiency and bit error rate performance) are presented. These results will be used by a follow-on study to significantly reduce the number of candidate waveforms, so that all attributes can be more thoroughly evaluated.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectImproving Use of RF Spectrumen
dc.subjectSecurity/Frequency Allocationen
dc.subjectFrequency Encroachmenten
dc.subjectHigh Data Ratesen
dc.subjectModulation/Multiplexingen
dc.titleBANDWIDTH EFFICIENT MODULATION SCHEMES FOR FUTURE TT&C APPLICATIONSen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentThe Aerospace Corporationen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-12T23:09:34Z
html.description.abstractThis paper presents initial results of an investigation on bandwidth efficient waveforms for telemetry, tracking and commands (TT&C). Included in the investigation are waveforms that are currently being considered by the International Consultative Committee for Space Data Systems (CCSDS) and American Institute of Aeronautics and Astronautics (AIAA) for standards, advanced waveforms and others that have the potential to become future standards. The goal of this investigation is to recommend a suite of bandwidth efficient modulation schemes for further investigation. This suite of modulation scheme should be suitable for various TT&C applications with data rates ranging from a few hundreds Bit Per Second (bps) to a few hundreds Mega bps (Mbps). First, the philosophy of waveform evaluation is described. The description includes a list of waveform attributes leading to quantitative and qualitative figures of merit for bandwidth efficient waveforms. Then quantitative results for the two most important waveform attributes (bandwidth efficiency and bit error rate performance) are presented. These results will be used by a follow-on study to significantly reduce the number of candidate waveforms, so that all attributes can be more thoroughly evaluated.


Files in this item

Thumbnail
Name:
ITC_2001_01-12-3.pdf
Size:
169.4Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record