TELEMETRY CHALLENGES FOR BALLISTIC MISSILE TESTING IN THE CENTRAL PACIFIC
Issue Date
1996-10Keywords
Ballistic Missile DefenseBMD
Instrumentation
Missile Defense
National Missile Defense
NMD
Telemetry
Time-Space-Position-Information
Theater Ballistic Missile Defense
(TBMD)
Metadata
Show full item recordRights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) and National Missile Defense (NMD) weapon systems to defend against the expanding ballistic missile threat. In the arms control arena, theater ballistic missile threats have been defined to include systems with reentry velocities up to five kilometers per second and strategic ballistic missile threats have reentry velocities that exceed five kilometers per second. The development and testing of TMD systems such as the Army Theater High Altitude Area Defense (THAAD) and the Navy Area Theater Ballistic Missile Defense (TBMD) Lower Tier, and NMD systems such as the Army Exoatmospheric Kill Vehicle and the Army Ground-Based Radar, pose exceptional challenges that stem from extreme acquisition range and high telemetry data transfer rates. Potential Central Pacific range locations include U.S. Army Kwajalien Atoll/Kwajalein Missile Range (USAKA/KMR) and the Pacific Missile Range Facility (PMRF) with target launches from Vandenberg Air Force Base, Wake Island, Aur Atoll, Johnston Island, and, possibly, an airborne platform. Safety considerations for remote target launches dictate utilization of high-data-rate, on-board instrumentation; technical performance measurement dictates transmission of focal plane array data; and operational requirements dictate intercepts at exoatmospheric altitudes and long slant ranges. The high gain, high data rate, telemetry acquisition requirements, coupled with loss of the upper S-band spectrum, may require innovative approaches to minimize electronic noise, maximize telemetry system gain, and fully utilize the limited S-band telemetry spectrum. The paper will address the emerging requirements and will explore the telemetry design trade space.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079
Additional Links
http://www.telemetry.org/Related items
Showing items related by title, author, creator and subject.
-
MISSILE FLIGHT SAFETY AND TELEMETRY AT WHITE SANDS MISSILE RANGENEWTON, HENRY L.; WHITE SANDS MISSILE RANGE, NM (International Foundation for Telemetering, 1991-11)Missile Flight Test Safety Managers (MFTSM) and other flight safety personnel at White Sands Missile Range (WSMR) constantly monitor the realtime space position of missile and airborne target vehicles and the telemetered missile and target vehicle performance parameters during the test flight to determine if these are about to leave Range boundaries or if erratic vehicle performance might endanger Range personnel, Range support assets or the nearby civilian population. WSMR flight safety personnel rely on the vehicle telemetry system to observe the Flight Termination System (FTS) parameters. A realtime closed loop that involves the ground command-destruct transmitter, the vehicle command-destruct receiver (CDR), other FTS components, the missile S-band telemetry transmitter, and the ground telemetry acquisition/ demultiplex system is active when the vehicle is in flight. The FTS engineer relies upon telemetry to provide read-back status of the flight termination system aboard the vehicle. WSMR flight safety personnel use the telemetry system to assess realtime airborne vehicle systems performance and advise the MFTSM. The MFTSM uses this information, in conjunction with space position information provided by an Interactive Graphics Display System (IGDS), to make realtime destruct decisions about missiles and targets in flight. This paper will aid the missile or target developer in understanding the type of vehicle performance data and FTS parameters WSMR flight safety personnel are concerned with, in realtime missile test operations.
-
HSTSS BATTERY DEVELOPMENT FOR MISSILE & BALLISTIC TELEMETRY APPLICATIONSBurke, Lawrence W., Jr.; Bukowski, Edward; Newnham, Colin; Scholey, Neil; Hoge, William; Ye, Zhiyaun; U.S. Army Research Laboratory; Ultralife Batteries (UK) Ltd.; Ultralife Batteries, Inc. (International Foundation for Telemetering, 1999-10)The rapid growth in portable and wireless communication products has brought valuable advancements in battery technology. No longer is a battery restricted to a metal container in cylindrical or prismatic format. Today’s batteries (both primary and secondary) can be constructed in thin sheets and sealed in foil/plastic laminate packages. Along with improvements in energy density, temperature performance, and environmentally friendly materials, these batteries offer greater packaging options at a significantly lower development cost. Under the Hardened Subminiature Telemetry and Sensor System (HSTSS) program these battery technologies have been further developed for high-g telemetry applications. Both rechargeable solid state lithium-ion polymer and primary lithium manganese dioxide batteries are being developed in conjunction with Ultralife Batteries Inc. Prototypes of both chemistries have been successfully tested in a ballistic environment while providing high constant rates of discharge, which is essential to these types of applications. Electrical performance and environmental data are reported.
-
C-Band Transmitter Experimental (CTrEX) Test at White Sands Missile Range (WSMR)Nevarez, Jesus; Dannhaus, Joshua; White Sands Missile Range (International Foundation for Telemetering, 2015-10)The Department of Defense (DoD) anticipated the eventual sell off of a portion of the Aeronautical Mobile Telemetry (AMT) frequency spectrum (from 1755-1780 and 2155-2180 MHz), prompting the telemetry (TM) community to start designing and testing systems capable of operating in a portion of the C-Band spectrum (4400-4940 MHz and 5091-5150 MHz) several years ago. On December 17, 2014 the NAVY targets office at White Sands Missile Range (WSMR) launched the first in a series of C-band and S-band instrumented Orion vehicles to provide RF transmitted data products for ground system collection and in-depth analysis. This paper presents the first C-band Transmitter Experimental (CTrEX) high-dynamic, spinning vehicle test at WSMR and summarizes the initial findings along with a path forward for future CTrEX rocket tests.