• Login
    View Item 
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 36 (2000)
    • View Item
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 36 (2000)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ULTRA HIGH BIT RATE (UP TO 1GBIT/S) BANDWIDTH EFFICIENT FQPSK ALL-DIGITAL MODULATOR/DEMODULATOR ARCHITECTURES AND NASA IMPLEMENTATIONS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ITC_2000_00-12-4.pdf
    Size:
    208.0Kb
    Format:
    PDF
    Download
    Author
    Ghuman, Parminder
    Koubek, Steve
    Winkert, Tom
    Gray, Andrew
    Lay, Norm
    Yan, Tsun-Yee
    Affiliation
    National Aeronautics and Space Administration
    California Institute of Technology
    Issue Date
    2000-10
    
    Metadata
    Show full item record
    Rights
    Copyright © International Foundation for Telemetering
    Collection Information
    Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
    Publisher
    International Foundation for Telemetering
    Journal
    International Telemetering Conference Proceedings
    Abstract
    The paper presents ongoing efforts at NASA’s Goddard Space Flight Center and the Jet Propulsion Laboratory to develop ultra high bit rate bandwidth efficient FQPSK modulators and demodulators. The ability to transmit and receive ever-increasing amounts of extremely high rate data is an enduring challenge in the arena of near-earth space borne science missions. Reliable and efficient transmission of information at these data rates requires the use of power and bandwidth efficient modulations that exhibit low transmitter, receiver, and decoder complexity. Conventional high rate approaches for achieving spectral limiting typically employ sharp post amplifier filtering at the transmitter to limit the interference to the adjacent bands. However, using analog filtering alone can produce substantial intersymbol interference and other distortions that substantially affect the detection performance of the signal. In contrast, various theoretical classes of modulation waveforms can be tailored to provide varying degrees of bandwidth and power efficiency or robustness to non-linear transmitter distortions while incurring little or no performance losses. In order to realize many of these signal types, precise amplitude and phase control over the synthesis of these signals is required, typically necessitating the use of digital signal processing.
    Sponsors
    International Foundation for Telemetering
    ISSN
    0884-5123
    0074-9079
    Additional Links
    http://www.telemetry.org/
    Collections
    International Telemetering Conference Proceedings, Volume 36 (2000)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.