Show simple item record

dc.contributor.authorGhuman, Parminder
dc.contributor.authorKoubek, Steve
dc.contributor.authorWinkert, Tom
dc.contributor.authorGray, Andrew
dc.contributor.authorLay, Norm
dc.contributor.authorYan, Tsun-Yee
dc.date.accessioned2016-05-02T19:57:06Zen
dc.date.available2016-05-02T19:57:06Zen
dc.date.issued2000-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607703en
dc.descriptionInternational Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, Californiaen_US
dc.description.abstractThe paper presents ongoing efforts at NASA’s Goddard Space Flight Center and the Jet Propulsion Laboratory to develop ultra high bit rate bandwidth efficient FQPSK modulators and demodulators. The ability to transmit and receive ever-increasing amounts of extremely high rate data is an enduring challenge in the arena of near-earth space borne science missions. Reliable and efficient transmission of information at these data rates requires the use of power and bandwidth efficient modulations that exhibit low transmitter, receiver, and decoder complexity. Conventional high rate approaches for achieving spectral limiting typically employ sharp post amplifier filtering at the transmitter to limit the interference to the adjacent bands. However, using analog filtering alone can produce substantial intersymbol interference and other distortions that substantially affect the detection performance of the signal. In contrast, various theoretical classes of modulation waveforms can be tailored to provide varying degrees of bandwidth and power efficiency or robustness to non-linear transmitter distortions while incurring little or no performance losses. In order to realize many of these signal types, precise amplitude and phase control over the synthesis of these signals is required, typically necessitating the use of digital signal processing.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.titleULTRA HIGH BIT RATE (UP TO 1GBIT/S) BANDWIDTH EFFICIENT FQPSK ALL-DIGITAL MODULATOR/DEMODULATOR ARCHITECTURES AND NASA IMPLEMENTATIONSen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentNational Aeronautics and Space Administrationen
dc.contributor.departmentCalifornia Institute of Technologyen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-28T03:53:49Z
html.description.abstractThe paper presents ongoing efforts at NASA’s Goddard Space Flight Center and the Jet Propulsion Laboratory to develop ultra high bit rate bandwidth efficient FQPSK modulators and demodulators. The ability to transmit and receive ever-increasing amounts of extremely high rate data is an enduring challenge in the arena of near-earth space borne science missions. Reliable and efficient transmission of information at these data rates requires the use of power and bandwidth efficient modulations that exhibit low transmitter, receiver, and decoder complexity. Conventional high rate approaches for achieving spectral limiting typically employ sharp post amplifier filtering at the transmitter to limit the interference to the adjacent bands. However, using analog filtering alone can produce substantial intersymbol interference and other distortions that substantially affect the detection performance of the signal. In contrast, various theoretical classes of modulation waveforms can be tailored to provide varying degrees of bandwidth and power efficiency or robustness to non-linear transmitter distortions while incurring little or no performance losses. In order to realize many of these signal types, precise amplitude and phase control over the synthesis of these signals is required, typically necessitating the use of digital signal processing.


Files in this item

Thumbnail
Name:
ITC_2000_00-12-4.pdf
Size:
208.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record