Author
Temple, KipAffiliation
Air Force Flight Test CenterIssue Date
2000-10Keywords
TransmitterQuadrature modulator imbalance
Feher’s patented quadrature phase shift keying
Bit error probability
Metadata
Show full item recordRights
Copyright © International Foundation for TelemeteringCollection Information
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.Abstract
When designing transmitters for quadrature modulation schemes, the designer always tries to achieve good balance and symmetry of the in-phase (I) and quadrature (Q) branches of the modulator in terms of amplitude, phase, and offsets. Perfect balance between modulators is ideal but rarely if ever achieved. The Advance Range Telemetry (ARTM) program has placed indirect specifications on the remnant carrier and sideband levels which are controlled by modulator imbalance. These specifications will govern the ARTM programs first generation of Feher’s patented quadrature phase shift keying, version B (FQPSK-B) [9] airborne telemetry transmitters. The ARTM Program has also adopted test procedures for quantifying these modulation imbalances. This paper looks at the effects of modulator imbalances on spectral occupancy and bit error probability of the airborne telemetry link. It also outlines how these imbalances influence the levels in one of the ARTM specifications. Recommendations are presented based on the measured data for higher bit rate telemetry systems.Sponsors
International Foundation for TelemeteringISSN
0884-51230074-9079