Show simple item record

dc.contributor.authorDowling, Jason
dc.contributor.authorWelling, John
dc.contributor.authorAerosys, Loral
dc.contributor.authorNanzetta, Kathy
dc.contributor.authorBennett, Toby
dc.contributor.authorShi, Jeff
dc.date.accessioned2016-05-05T18:49:16Zen
dc.date.available2016-05-05T18:49:16Zen
dc.date.issued1995-11en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608429en
dc.descriptionInternational Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevadaen_US
dc.description.abstractNASA’s use of high bandwidth packetized Consultative Committee for Space Data Systems (CCSDS) telemetry in future missions presents a great challenge to ground data system developers. These missions, including the Earth Observing System (EOS), call for high data rate interfaces and small packet sizes. Because each packet requires a similar amount of protocol processing, high data rates and small packet sizes dramatically increase the real-time workload on ground packet processing systems. NASA’s Goddard Space Flight Center has been developing packet processing subsystems for more than twelve years. Implementations of these subsystems have ranged from mini-computers to single-card VLSI multiprocessor subsystems. The latter subsystem, known as the VLSI Packet Processor, was first deployed in 1991 for use in support of the Solar Anomalous & Magnetospheric Particle Explorer (SAMPEX) mission. An upgraded version of this VMEBus card, first deployed for Space Station flight hardware verification, has demonstrated sustained throughput of up to 50 Megabits per second and 15,000 packets per second. Future space missions including EOS will require significantly higher data and packet rate performance. A new approach to packet processing is under development that will not only increase performance levels by at least a factor of six but also reduce subsystem replication costs by a factor of five. This paper will discuss the development of a next generation packet processing subsystem and the architectural changes necessary to achieve a thirty-fold improvement in the performance/price of real-time packet processing.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectCCSDS Service Processingen
dc.subjectVLSIen
dc.subjectmultiprocessoren
dc.subjectASICen
dc.titleACCELERATING REAL-TIME SPACE DATA PACKET PROCESSINGen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentNASAen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-08-18T04:34:31Z
html.description.abstractNASA’s use of high bandwidth packetized Consultative Committee for Space Data Systems (CCSDS) telemetry in future missions presents a great challenge to ground data system developers. These missions, including the Earth Observing System (EOS), call for high data rate interfaces and small packet sizes. Because each packet requires a similar amount of protocol processing, high data rates and small packet sizes dramatically increase the real-time workload on ground packet processing systems. NASA’s Goddard Space Flight Center has been developing packet processing subsystems for more than twelve years. Implementations of these subsystems have ranged from mini-computers to single-card VLSI multiprocessor subsystems. The latter subsystem, known as the VLSI Packet Processor, was first deployed in 1991 for use in support of the Solar Anomalous & Magnetospheric Particle Explorer (SAMPEX) mission. An upgraded version of this VMEBus card, first deployed for Space Station flight hardware verification, has demonstrated sustained throughput of up to 50 Megabits per second and 15,000 packets per second. Future space missions including EOS will require significantly higher data and packet rate performance. A new approach to packet processing is under development that will not only increase performance levels by at least a factor of six but also reduce subsystem replication costs by a factor of five. This paper will discuss the development of a next generation packet processing subsystem and the architectural changes necessary to achieve a thirty-fold improvement in the performance/price of real-time packet processing.


Files in this item

Thumbnail
Name:
ITC_1995_95-08-2.pdf
Size:
437.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record