Show simple item record

dc.contributor.authorYoussef, Ahmed H.
dc.date.accessioned2016-05-06T20:18:00Zen
dc.date.available2016-05-06T20:18:00Zen
dc.date.issued1999-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608526en
dc.descriptionInternational Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevadaen_US
dc.description.abstractThis paper presents the future of optical networking via photonic switches as a potential replacement for the existing electronic cross-connects. Although optical amplifiers are now mainstream and wave division multiplexing (WDM) systems are a commercial reality, the industry’s long-term vision is one of the all-optical network. This will require optical switching equipment such as all-optical or “photonic” cross-connect switches that will provide packet switching at an optical layer. Currently, as voice calls or data traffic are routed throughout Range and commercial networks, the information can travel through many fiber-optic segments which are linked together using electronic cross-connects. However, this electronic portion of the network is the bottleneck that is preventing the ideal network from achieving optimal speeds. Information is converted from light into an electronic signal, routed to the next circuit pathway, then converted back into light as it travels to the next network destination. In an all-optical network, the electronics are removed from the equation, eliminating the need to convert the signals and thereby significantly improving network performance and throughput. Removing the electronics improves network reliability and restoration speeds in the event of an outage, provides greater flexibility in network provisioning, and provides a smooth transition when migrating to future optical transmission technologies. Despite the fact that photonic switching remains uncommercialized, it now seems apparent that the core switches in both the public networks and DoD Range networks of the early 21st century will probably carry ATM cells over a photonic switching fabric.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.subjectPhotonic Switchesen
dc.subjectCross-Connect Switchesen
dc.subjectWave Division Multiplexing (WDM)en
dc.subjectDense WDM (DWDM)en
dc.titleASSESSMENT OF PHOTONIC SWITCHES AS FUTURE REPLACEMENT FOR ELECTRONIC CROSS-CONNECT SWITCHESen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentTYBRIN Corporationen
dc.contributor.departmentEdwards Air Force Baseen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-05-25T17:16:28Z
html.description.abstractThis paper presents the future of optical networking via photonic switches as a potential replacement for the existing electronic cross-connects. Although optical amplifiers are now mainstream and wave division multiplexing (WDM) systems are a commercial reality, the industry’s long-term vision is one of the all-optical network. This will require optical switching equipment such as all-optical or “photonic” cross-connect switches that will provide packet switching at an optical layer. Currently, as voice calls or data traffic are routed throughout Range and commercial networks, the information can travel through many fiber-optic segments which are linked together using electronic cross-connects. However, this electronic portion of the network is the bottleneck that is preventing the ideal network from achieving optimal speeds. Information is converted from light into an electronic signal, routed to the next circuit pathway, then converted back into light as it travels to the next network destination. In an all-optical network, the electronics are removed from the equation, eliminating the need to convert the signals and thereby significantly improving network performance and throughput. Removing the electronics improves network reliability and restoration speeds in the event of an outage, provides greater flexibility in network provisioning, and provides a smooth transition when migrating to future optical transmission technologies. Despite the fact that photonic switching remains uncommercialized, it now seems apparent that the core switches in both the public networks and DoD Range networks of the early 21st century will probably carry ATM cells over a photonic switching fabric.


Files in this item

Thumbnail
Name:
ITC_1999_99-22-2.pdf
Size:
144.5Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record