COMPUTER-AIDED DESIGN OF CIRCULARLY-POLARIZED CONFORMAL MICROSTRIP PATCH ANTENNA FOR TELEMETRY APPLICATIONS
dc.contributor.author | Wu, Doris I. | |
dc.contributor.author | Rieger, James | |
dc.date.accessioned | 2016-05-06T23:22:10Z | en |
dc.date.available | 2016-05-06T23:22:10Z | en |
dc.date.issued | 1994-10 | en |
dc.identifier.issn | 0884-5123 | en |
dc.identifier.issn | 0074-9079 | en |
dc.identifier.uri | http://hdl.handle.net/10150/608569 | en |
dc.description | International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California | en_US |
dc.description.abstract | Planar microstrip antennas are desirable in many telemetry applications because they are small in size, light in weight, and conformal to most surfaces. The design and optimization of circularly-polarized omnidirectional microstrip arrays using a new software simulation tool are discussed in this paper. Critical design issues such as the optimization of each array element for circular polarization and the minimization of mutual couplings as well as feed network mismatch are examined. The software tool, which consists of a novel graphical user interface and a full-wave numerical simulator for a flat mounting surface, provides a testbed environment for the user to explore new designs as well as optimizing existing designs. Using this tool, the design of several wraparound arrays with different mounting cylinder radii are presented. Comparisons between measured and simulated data for two S-band 8-element wraparound arrays are also presented. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Microstrip Patch Antenna | en |
dc.subject | Wraparound Array | en |
dc.subject | Conformal Array | en |
dc.subject | Circular Polarization | en |
dc.subject | Computer-Aided Design Tool | en |
dc.subject | Simulation | en |
dc.subject | Modeling | en |
dc.title | COMPUTER-AIDED DESIGN OF CIRCULARLY-POLARIZED CONFORMAL MICROSTRIP PATCH ANTENNA FOR TELEMETRY APPLICATIONS | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | en |
refterms.dateFOA | 2018-09-11T10:02:07Z | |
html.description.abstract | Planar microstrip antennas are desirable in many telemetry applications because they are small in size, light in weight, and conformal to most surfaces. The design and optimization of circularly-polarized omnidirectional microstrip arrays using a new software simulation tool are discussed in this paper. Critical design issues such as the optimization of each array element for circular polarization and the minimization of mutual couplings as well as feed network mismatch are examined. The software tool, which consists of a novel graphical user interface and a full-wave numerical simulator for a flat mounting surface, provides a testbed environment for the user to explore new designs as well as optimizing existing designs. Using this tool, the design of several wraparound arrays with different mounting cylinder radii are presented. Comparisons between measured and simulated data for two S-band 8-element wraparound arrays are also presented. |